

Hands-On IoT:
Wi-Fi and Embedded Web
Development

Developing with ESP32, Arduino, C/C++, HTML, CSS, and
JavaScript by Examples

Erwin Ouyang

Help others achieve their dreams and
you will achieve yours.

— LES BROWN

Downloading the Code

The code for the examples shown in this book is available on my
GitHub repository, https://github.com/yohanes-erwin/arduino-
ml/tree/master/esp32_examples.

Other Resources

Visit the following sites for other tutorials: www.handsonembedded.
com, aiotedge.tech

Preface

Rapid advances in IoT technology demand a lot of devices to be con-
nected to the internet. To design such devices, we usually need knowl-
edges about microcontrollers and computer network. As an example,
we often found devices that can be connected to the network and can
be configured via web interfaces. These devices implement embed-
ded web server. For example, most of network devices usually use
embedded web server as the interface for configuration.

Although there are a lot of books that discuss about microcontrollers
or web development, they usually discuss the topics in separate books.
Rarely, there is a book that discusses both of the topics in one book,
i.e. the book that discusses how to create a web interface for a mi-
crocontroller. Therefore, this book is written to fill that gap. The
Arduino library is used to program the ESP32, while HTML, CSS, and
JavaScript are used to build the web interface.

Erwin Ouyang
March 2020

i

Contents

Preface i

Contents ii

Listings vii

1 Introduction 1
1.1 Internet of Things . 1
1.2 ESP32 . 3

1.2.1 ESP32 Modules 5
1.2.2 ESP32 Development Boards 6

1.3 Wi-Fi . 7
1.4 Arduino . 8
1.5 Embedded Web Development 8

1.5.1 Back-End . 9
1.5.2 Front-End . 9

1.6 Prerequisites . 10
1.6.1 DOIT Esp32 DevKit v1 11
1.6.2 ESP32 Library 11

1.7 ESP32 Documentations 12

ii

CONTENTS iii

I Peripherals Programming 13

2 Digital Output 14
2.1 General Purpose Input/Output 14
2.2 GPIO as Output . 15
2.3 ESP32 GPIO Peripheral: Output 15
2.4 Example Circuit: LED Circuits 17
2.5 Example Code: Control an LED 17
2.6 Summary . 19

3 Digital Input 20
3.1 GPIO as Input . 20
3.2 ESP32 GPIO Peripheral: Input 21
3.3 Example Circuit: Button Circuits 21
3.4 Example Code: Read a Button State 23
3.5 Summary . 24

4 Serial I/O 25
4.1 Serial Communication 25
4.2 ESP32 UART Peripheral 26

4.2.1 Serial Print 27
4.2.2 Serial Read 29

4.3 Example Code: Serial Print 30
4.4 Example Code: Serial Read 31
4.5 Summary . 32

5 Analog Output 33
5.1 Varying the Output Voltage 33
5.2 Pulse Width Modulation 34
5.3 ESP32 LEDC Peripheral 35
5.4 Example Code: Dim an LED with PWM 36
5.5 Summary . 38

6 Analog Input 39

CONTENTS iv

6.1 Varying the Input Voltage 39
6.2 Analog-to-Digital Converter 40
6.3 ESP32 ADC Peripheral 41
6.4 Example Circuit: Voltage Divider 41
6.5 Example Code: Read a Trimpot 42
6.6 Summary . 44

7 Sensors 45
7.1 Sensing Physical Properties 45
7.2 Example Code: DHT11 Sensor 47
7.3 Example Code: DS1307 Real-Time Clock 50
7.4 Summary . 52

II Wi-Fi Programming 53

8 Wi-Fi Access Point 54
8.1 Wi-Fi Network . 54
8.2 Access Point . 56
8.3 ESP32 Wi-Fi Networking: Access Point 56
8.4 Example Code: Access Point Mode 58
8.5 Summary . 61

9 Wi-Fi Station 62
9.1 Station . 62
9.2 ESP32 Wi-Fi Networking: Station 63
9.3 Example Code: Station Mode 65
9.4 Summary . 68

10 TCP Server 69
10.1 Internet Protocol Suite 69
10.2 TCP Server . 71
10.3 ESP32 TCP Server 71
10.4 Example Code: TCP Server 72

CONTENTS v

10.5 Summary . 77

11 TCP Client 78
11.1 TCP Client . 78
11.2 ESP32 TCP Client . 79
11.3 Example Code: TCP Client 80
11.4 Summary . 84

12 HTTP Server 85
12.1 HyperText Transfer Protocol 85
12.2 HTTP Server . 86
12.3 Message Format . 87
12.4 ESP32 HTTP Server 88
12.5 Example Code: HTTP Server 89
12.6 Summary . 94

13 HTTP Client 95
13.1 HTTP Client . 95
13.2 ESP32 HTTP Client 96
13.3 Example Code: HTTP Client 96
13.4 Summary . 100

III Embedded Web Development 101

14 Web Server 102
14.1 Web Server . 102
14.2 ESPAsyncWebServer Library 103
14.3 Example Code: Simple Web Server 104
14.4 Summary . 107

15 HyperText Markup Language (HTML) 108
15.1 HyperText Markup Language (HTML) 108
15.2 Example Code: HTML for Controlling an LED 110

CONTENTS vi

15.3 Example Code: HTML for Dimming an LED 112
15.4 Example Code: HTML for Reading a Physical Button . 113
15.5 Summary . 115

16 Web Page Data Exchange 116
16.1 Web Page Data Exchange 116
16.2 Example Code: Web Server for Controlling an LED . . 117
16.3 Example Code: Web Server for Dimming an LED . . . 120
16.4 HTTP GET and POST Methods 125
16.5 Example Code: Web Server for Reading a Physical

Button . 126
16.6 Summary . 130

17 JavaScript (JS) 131
17.1 JavaScript . 131
17.2 Example Code: Dimming an LED with JS 132
17.3 Example Code: Reading a Physical Button with JS . . 137
17.4 Example Code: Reading the DHT11 Sensor with JS . . 143
17.5 Wrapping Up: AJAX Technique 148
17.6 Summary . 148

18 SPI Flash File System 149
18.1 SPI Flash File System 149
18.2 Example Code: Web Server using SPIFFS 150
18.3 Summary . 153

19 Cascading Style Sheets (CSS) 154
19.1 Cascading Style Sheets 154
19.2 Bootstrap . 156
19.3 Example Code: Bootstrap Label 158
19.4 Example Code: Bootstrap Button 164
19.5 Example Code: Bootstrap Card 170
19.6 Summary . 176

CONTENTS vii

20 Gauge and Chart 177
20.1 Gauge and Chart . 177
20.2 Example Code: Gauge 178
20.3 Example Code: Chart 185
20.4 Summary . 193

Bibliography 194

Listings

2.1 Control an LED . 17
3.1 Read a button state 23
4.1 Serial print . 30
4.2 Serial read . 31
5.1 Dim an LED with PWM 36
6.1 Read a trimpot value 43
7.1 Read temperature and humidity from DHT11 48
7.2 Read timestamp from DS1307 51
8.1 Wi-Fi AP mode . 58
9.1 Wi-Fi station mode 65
10.1 TCP server . 73
11.1 TCP client . 80
12.1 HTTP server . 89
13.1 HTTP client . 96
14.1 Simple web server using ESPAsyncWebServer 104
15.1 HTML code for controlling an LED 110
15.2 HTML code for dimming an LED 112
15.3 HTML code for reading a physical button 113
16.1 Web server for controlling an LED 117
16.2 Web server for dimming an LED 121
16.3 Web server for reading a physical button 126
17.1 Dimming an LED with JavaScript 132
17.2 Reading a pyhsical button with JavaScript 138

viii

CONTENTS ix

17.3 Reading the DHT11 sensor with JavaScript 143
18.1 Web server using SPIFFS 150
19.1 C code for styling a text using Bootstrap badge class . 158
19.2 HTML code for styling a text using Bootstrap badge

class . 162
19.3 C code for styling HTML buttons using Bootstrap but-

ton class . 164
19.4 HTML code for styling HTML buttons using Bootstrap

button class . 168
19.5 C code for creating a container for other HTML ele-

ments using Bootstrap card class 171
19.6 HTML code for creating a container for other HTML

elements using Bootstrap card class 174
20.1 C code for streaming sensor readings to a real-time gauge178
20.2 HTML code for streaming sensor readings to a real-

time gauge . 182
20.3 C code for streaming sensor readings to a real-time chart185
20.4 HTML code for streaming sensor readings to a real-

time chart . 189

Chapter 1

Introduction

1.1 Internet of Things

Internet of Things (IoT) is a system of physical objects that are con-
nected to the Internet. The physical objects can be anything from
machines, animals, or people (wearable IoT devices). These objects
are provided with unique identifiers (UIDs) and the ability to exchange
data over a network [1].

The IoT applications are classified into consumer, commercial, indus-
trial, infrastructure, and military [2]:

� Consumer applications: smart home, elder care.

� Commercial applications: medical and healthcare, transporta-
tion, V2X communications, building and home automation.

� Industrial applications: manufacturing, agriculture.

� Infrastructure applications: metropolitan scale deployments,
energy management, environmental monitoring.

1

CHAPTER 1. INTRODUCTION 2

� Military applications: Internet of Battlefield Things, Ocean of
Things.

The IoT stack consists of four technology layers: sensors, controllers,
communications, and app platforms.

� Sensors: sensors are devices that are used to detect some type
of input from the physical environment. This input is converted
to electrical signal. The example of sensors are touch sensors,
temperature sensors, light sensors, etc.

� Controllers: controllers are devices that are used for local data
processing, storage, and data pre-processing before they are
sent to the communication devices. The example of controllers
are microcontrollers, microprocessors, digital signal processors
(DSP) field-programmable gate arrays (FPGA).

� Communications: communications are devices that used for
converting the data into analog or digital signal that can be
transmitted over a communication medium either wired or wire-
less. The example of communications are serial port, USB, Wi-
Fi, Bluetooth, LoRa, etc.

� App platforms: app platforms are used for device command and
control, data collection, data presentation, data analysis, and
data report. The data report from this layer can be integrated
to business process.

The objectives of this book focus on the controllers and communi-
cations layers. The ESP32 microcontroller is used as the controller
device and the Wi-Fi is used as the communication device.

CHAPTER 1. INTRODUCTION 3

Figure 1.1. ESP32 chip (ESP32-D0WDQ6). Retrieved March 14, 2020, from
gridconnect.com.

1.2 ESP32

ESP32 is a low-cost microcontroller with integrated Wi-Fi and Blue-
tooth. It is a successor to the ESP8266. The ESP32 chip is shown in
Figure 1.1. It is housed in a 6mm×6mm Quad-Flat No-leads (QFN)
package. ESP32 is made by Espressif Systems, a Shanghai-based Chi-
nese fabless semiconductor company. ESP32 is a very popular chip for
developing IoT devices.

The ESP32 functional block diagram is shown in Figure 1.2. The
ESP32 specifications are listed as the following [3]:

� Processors:

– CPU: Xtensa dual-core (or single-core) 32-bit LX6 micro-
processor, operating at 160 or 240 MHz and performing at
up to 600 DMIPS

– Ultra low power (ULP) co-processor

� Memory: 512 KiB SRAM

� Wireless connectivity:

– Wi-Fi: 802.11 b/g/n

CHAPTER 1. INTRODUCTION 4

Figure 1.2. ESP32 functional block diagram. Retrieved March 14, 2020, from
wikipedia.org.

– Bluetooth: v4.2 BR/EDR and BLE

� Peripheral interfaces:

– 12-bit SAR ADC up to 18 channels

– 2 × 8-bit DACs

– 10 × touch sensors (capacitive sensing GPIOs)

– 4 × SPI

– 2 × I2S interfaces

– 2 × I2C interfaces

– 3 × UART

– SD/SDIO/CE-ATA/MMC/eMMC host controller

– SDIO/SPI slave controller

– Ethernet MAC interface with dedicated DMA and IEEE
1588 Precision Time Protocol support

– CAN bus 2.0

– Infrared remote controller (TX/RX, up to 8 channels)

CHAPTER 1. INTRODUCTION 5

– Motor PWM

– LED PWM (up to 16 channels)

– Hall effect sensor

– Ultra low power analog pre-amplifier

� Security:

– IEEE 802.11 standard security features all supported, in-
cluding WFA, WPA/WPA2 and WAPI

– Secure boot

– Flash encryption

– 1024-bit OTP, up to 768-bit for customers

– Cryptographic hardware acceleration: AES, SHA-2, RSA,
elliptic curve cryptography (ECC), random number gener-
ator (RNG)

� Power management:

– Internal low-dropout regulator

– Individual power domain for RTC

– 5µA deep sleep current

– Wake up from GPIO interrupt, timer, ADC measurements,
capacitive touch sensor interrupt

1.2.1 ESP32 Modules

Espressif offers ESP32 modules powered by ESP32 chips [4]. One of
the most popular modules is the ESP32-WROOM-32xx. It is used
in many development boards. The modules support PCB antenna
or external antenna with IPEX/U.FL connector. They are shown in
Figure 1.3.

CHAPTER 1. INTRODUCTION 6

(a) (b)

Figure 1.3. ESP32 modules: (a) ESP32-WROOM-32 with PCB antenna; (b)
ESP32-WROOM-32U with IPEX antenna. Retrieved March 14, 2020, from espres-
sif.com.

Figure 1.4. DOIT Esp32 DevKit v1 board. Retrieved March 14, 2020, from
zerynth.com.

1.2.2 ESP32 Development Boards

The ESP32 modules are usually mounted on the other PCB boards.
These boards are called development boards. There are many ESP32
development boards available from Espressif [5]. In this book, the
DOIT Esp32 DevKit v1 board [6] is used as a reference. This is a
low-cost and quite popular development board. The board is shown
in Figure 1.4. It uses the ESP32-WROOM-32 module.

CHAPTER 1. INTRODUCTION 7

Table 1.1. Wi-Fi versions [8].

IEEE Standard Maximum Linkrate Frequency

IEEE 802.11ax 600–9608 Mbit/s 2.4/5 GHz, 1–6 GHz ISM
IEEE 802.11ac 433–6933 Mbit/s 5 GHz
IEEE 802.11n 72–600 Mbit/s 2.4/5 GHz
IEEE 802.11g 3–54 Mbit/s 2.4 GHz
IEEE 802.11a 1.5 to 54 Mbit/s 5 GHz
IEEE 802.11b 1 to 11 Mbit/s 2.4 GHz

1.3 Wi-Fi

Wi-Fi is a family of wireless communication technologies, based on the
IEEE 802.11 family of standards. Wi-Fi is commonly used for local
area networking of devices and Internet access [7]. There are several
Wi-Fi versions available as shown in Table 1.1.

There are two commonly used Wi-Fi modes: infrastructure and ad
hoc/Wi-Fi direct:

� Infrastructure: this mode is the most commonly used mode.
On the network, there is one base station and multiple stations.
The base station is called Wi-Fi access point (AP)/Wi-Fi router,
and the stations are the client devices, such as mobile phones,
tablets, PCs/laptops, etc. In this mode, all communications
goes through the base station.

� Ad hoc/Wi-Fi direct: this mode allows communications from
one station to another station without an AP. This mode is pop-
ular in multiplayer handheld game consoles, such as Playstation
Vita, Nintendo Switch, etc. Wi-Fi direct is popular for file trans-
fer and media sharing between mobile devices, laptops, game
consoles, and televisions.

CHAPTER 1. INTRODUCTION 8

This book focuses on the infrastructure mode, while the ad hoc/Wi-
Fi direct mode is beyond the scope of this book. We are going to
configure the Wi-Fi of ESP32 as a station that connects to the AP.

1.4 Arduino

Arduino is an open-source hardware and software company [9]. They
manufacture microcontroller boards and develop libraries and inte-
grated development environment (IDE) to program the boards. The
products are licensed under the GNU Lesser General Public License
(LGPL) or the GNU General Public License (GPL).

The Arduino libraries and IDE are not limited to boards manufatured
by Arduino, so other boards can use them as well. As an example, in
this book we use the Arduino libraries and IDE to program the ESP32.
In order to use Arduino IDE to program the ESP32, a custom library
for ESP32 is required [10]. It is developed by Espressif.

The Arduino IDE is shown in Figure 1.5. It is a cross-platform appli-
cation that available for Windows, macOs, and Linux.

1.5 Embedded Web Development

An embedded web is a website that is built into embedded devices.
The web page provides a control panel for configuring and monitoring
the device. A good example of these devices are computer network
devices, such as Ethernet switches, Wi-Fi AP/routers, modems, etc.
They usually have a web interface for configuring and monitoring the
device.

The web development is divided into two parts: back-end and front-
end. A block diagram of embedded web that consists of back-end and
front-end is shown in Figure 1.6.

CHAPTER 1. INTRODUCTION 9

Figure 1.5. Arduino IDE.

1.5.1 Back-End

Back-end refers to the server-side of the web application. It is respon-
sible to ensure everything works. It uses an embedded web (HTTP)
server to serve HTTP request from the client (web browsers). In this
book, we are going to build embedded web servers in the ESP32. We
are going to use a library called ESPAsyncWebServer [11].

1.5.2 Front-End

Front-end refers to the client-side of the web application. It is basi-
cally what users see through the web browsers. There are three main
programming languages that are used to develop front-end: Hyper-
Text Markup Language (HTML), Cascading Style Sheets (CSS), and
JavaScript (JS). HTML provides the elements and stucture of web

CHAPTER 1. INTRODUCTION 10

Figure 1.6. A block diagram of an embedded web.

pages. CSS enhances the layout and style of the HTML. JavaScript is
used to control the behavior of the elements.

1.6 Prerequisites

In order to follow the example programs in this book, there are several
prerequisites:

� DOIT Esp32 DevKit v1: the example programs in this book
are based on this ESP32 board, but other ESP32 boards should
work as well.

� Arduino IDE: the Arduino IDE from https://www.arduino.
cc/en/Main/Software is installed on your development PC.
It is required to use Arduino IDE at version 1.8 or later.

� ESP32 library: the ESP32 library from https://github.
com/espressif/arduino-esp32 is installed on your Ar-
duino IDE.

� ESP32 file system uploader: this is an Arduino IDE plugin for
uploading data files to the ESP32. You can get it from https:

CHAPTER 1. INTRODUCTION 11

Figure 1.7. DOIT Esp32 DevKit v1 pin diagram. Retrieved March 16, 2020, from
randomnerdtutorials.com.

//github.com/me-no-dev/arduino-esp32fs-plugin.
It is used in chapter 18 and later.

1.6.1 DOIT Esp32 DevKit v1

There are two versions of DOIT Esp32 DevKit v1: version with 30 pins
and version with 36 pins. In this book, we are going to use the version
with 30 pins. The pin diagram of this board is shown in Figure 1.7.
This board can be powered via the on-board micro B USB connector
or via the VIN pin. The recommended external supply voltage for the
VIN pin is from 7 to 12V [12].

1.6.2 ESP32 Library

The ESP32 library, it is also called ’Arduino core for the ESP32’, is
required by the Arduino IDE in order to program the ESP32. Follow
the following instructions to install the ESP32 library [13]:

� Start Arduino IDE and open Preferences window.

CHAPTER 1. INTRODUCTION 12

� Enter this link: https://raw.githubusercontent.com/
espressif/arduino-esp32/gh-pages/package_esp32_
index.json into Additional Board Manager URLs field.
You can add multiple URLs by separating them with commas.

� Go to menu Tools → Board, then open Boards Manager and
install esp32.

1.7 ESP32 Documentations

There are several ESP32 documentations that you may need to pro-
gram the ESP32 as follows:

� ESP32 Datasheet: https://www.espressif.com/sites/
default/files/documentation/esp32_datasheet_
en.pdf

� ESP-IDF Programming Guide: https://docs.espressif.
com/projects/esp-idf/en/latest/esp32/index.html

Part I

Peripherals Programming

13

Chapter 2

Digital Output

What will you learn in this chapter?

� Concept of digital output.

� Use digital output to control an LED.

2.1 General Purpose Input/Output

General purpose input/output (GPIO) is a standard interface used
for connecting microcontrollers to other electronic components. For
example, it can be connected to a light bulb (with external driver
circuit) to turn it on or off, or it can be connected to a button to
count how many times it is pressed.

A GPIO can be customized and controlled by software either as input or
output. It works as a digital input or a digital output. In other words,
it works in two discrete levels, which are logical high and low. These
logic states are usually represented by two different voltages, which
are called logic voltage. For example, a logical high is represented as

14

CHAPTER 2. DIGITAL OUTPUT 15

+5V or +3.3V, and a logical low is represented as 0V.

2.2 GPIO as Output

Digital output is the simplest way that your microcontrollers are going
to control other devices. When a GPIO is configured as a digital
output, it is usually used to control other electronic components, such
as LED, buzzer, relay, DC motor, etc. With a digital output, you can
turn them on or off.

Some of these components, such as relay or DC motor, require more
voltage and current than a digital output can supply. A typical digital
output can only supply current limited to about 20mA. Therefore, you
need an intermediary (driver circuit). The most common component
that is used to control other components that need higher voltage and
current is the transistor.

2.3 ESP32 GPIO Peripheral: Output

The ESP32 chip has 40 physical GPIO pads. However, some of them
can’t be used or don’t have the corresponding pin on the chip pack-
age. Each GPIO can be configured as output, input, or connected to
internal peripherals, such as ADC, DAC, I2C, SPI, UART, etc. The
logic voltage of the GPIO is 3.3V (not 5V-tolerant). There are some
GPIO pins with specific limitations that may not suitable for a specific
project. You can refer to this reference [14] for the details.

In ESP32 Arduino, there are two important functions for using digital
output: pinMode and digitalWrite. The pinMode function is
defined as

void pinMode(uint8_t pin, uint8_t mode);

which is used to configure the GPIO either as output or input. It
takes two input arguments: GPIO pin that you want to configure and

CHAPTER 2. DIGITAL OUTPUT 16

GPIO mode (OUTPUT, INPUT, or INPUT PULLUP). We will get into
digital input in the next chapter.

The digitalWrite function is defined as

void digitalWrite(uint8_t pin, uint8_t val);

which is used to write the logic state to the digital output. It takes
two input arguments: GPIO pin that you want to write and the output
state (HIGH or LOW).

Those functions are defined in the ESP32 Arduino core in the esp32-
hal-gpio.h and esp32-hal-gpio.c.

(a) (b)

Figure 2.1. Active-high LED circuit: (a) A logical high turns on the LED; (b) A
logical low turns off the LED.

(a) (b)

Figure 2.2. Active-low LED circuit: (a) A logical low turns on the LED; (b) A
logical high turns off the LED.

CHAPTER 2. DIGITAL OUTPUT 17

2.4 Example Circuit: LED Circuits

A light-emitting diode (LED) is an electronic component that emits
light when current flows through it. There are two ways of wiring an
LED to the digital output pin, which are active-high and active-low.

� Active-high: the active-high LED circuit is shown in Figure
2.1. The LED is on when the output pin is high. It is called
active-high because a logical high is needed to activate (turn on)
the LED. When a logical high is written to the output pin, the
current can flow through the resistor and LED, and then flows
to the GND. Therefore, the LED is on. When a logical low is
written, the current can’t flow. Therefore, the LED is off.

� Active-low: the active-low LED circuit is shown in Figure 2.2.
The LED is on when the output pin is low. It is called active-low
because a logical low is needed to activate (turn on) the LED.
When a logical low is written to the output pin, the current can
flow from the 3.3V through the resistor and LED, and then flows
to the GND. Therefore, the LED is on. When a logical high is
written, the current can’t flow. Therefore, the LED is off.

2.5 Example Code: Control an LED

The easiest way to see digital output in action is to create an example
code to turn on and off an LED. In this code, we are going to blink
(turn on and off repeatedly) the on-board LED. The on-board LED is
connected to the pin D2 of the DOIT Esp32 DevKit v1. It uses an
active-high LED circuit. The code is shown in Listing 2.1.

Listing 2.1. Control an LED

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 22 Feb 2020
3

CHAPTER 2. DIGITAL OUTPUT 18

4 void setup()
5 {
6 // Set GPIO pin as output for on-board LED
7 pinMode(2, OUTPUT);
8 }
9

10 void loop()
11 {
12 // Turn on LED
13 digitalWrite(2, HIGH);
14 delay(500);
15 // Turn off LED
16 digitalWrite(2, LOW);
17 delay(500);
18 }

Here is the step-by-step to control an LED with digital output using
the ESP32 Arduino:

1. First, you need to configure a GPIO pin as output. In line 7,
you need to configure pin D2 as output by calling pinMode
function.

2. Then, in order to turn on the LED, you need to write a logical
high to pin D2 by calling digitalWrite function as in line
13.

3. After that, in line 14, add a delay of 500ms by calling delay
function. So, the LED is turned on for 500ms.

4. Finally, in line 16-17, you need to do the same procedure as in
step 2-3 to turn off the LED for 500ms.

Note that if you don’t add the delay or use a very short delay, then
you may not see the blinking because it is too fast for our eyes to see
the changes.

CHAPTER 2. DIGITAL OUTPUT 19

2.6 Summary

In this chapter, you have learned how to configure a GPIO as a digital
output. It produces a logical high or logical low that turns on or off the
LED, depending on the circuits either active-high or active-low. By
adding the delay between on and off states, you can see the blinking
LED.

Chapter 3

Digital Input

What will you learn in this chapter?

� Concept of digital input.

� Use digital input to read a button state.

3.1 GPIO as Input

In the previous chapter, you have learned about GPIO output for con-
troling an LED. In this chapter, you are going to learn about digital
input. Digital input is the simplest way that your microcontrollers can
read logic state either high or low. When a GPIO is configured as a
digital input, it is usually used to read logic state of the other elec-
tronic components, such as button, switch, keypad, rotary encoder,
etc.

20

CHAPTER 3. DIGITAL INPUT 21

3.2 ESP32 GPIO Peripheral: Input

In this chapter, we are going to configure the GPIO peripheral as input.
In ESP32 Arduino, there are two important functions for digital input:
pinMode and digitalRead. The pinMode function is defined as

void pinMode(uint8_t pin, uint8_t mode);

which is used to configure the GPIO either as output or input. It takes
two input arguments: GPIO pin that you want to configure and GPIO
mode (OUTPUT, INPUT, or INPUT PULLUP).

The digitalRead function is defined as

int digitalRead(uint8_t pin);

which is used to read the logic state of the digital input. It takes
one input argument, which is the GPIO pin that you want to read. It
returns the state of the digital input either HIGH or LOW.

Those functions are defined in the ESP32 Arduino core in the esp32-
hal-gpio.h and esp32-hal-gpio.c.

3.3 Example Circuit: Button Circuits

A button is an electronic component that has momentary ”on” posi-
tion when it is pressed, and it is reverted to ”off” position when it is
not pressed. A switch is another electronic component has ”on” and
”off” positions, but it can maintain its ”on” position. There are two
ways of wiring a button or switch to the digital input pin, which are
active-high and active-low.

� Active-high: the active-high button circuit is shown in Fig-
ure 3.1. In this circuit, the GND is connected to an input pin
through a resistor, so there is no current flows to the input pin.
Therefore, it receives a logical low. When the button is pressed,

CHAPTER 3. DIGITAL INPUT 22

(a) (b)

Figure 3.1. Active-high button circuit: (a) Button released, input pin receives a
logical low; (b) Button pressed, input pin receives a logical high.

(a) (b)

Figure 3.2. Active-low button circuit: (a) Button released, input pin receives a
logical high; (b) Button pressed, input pin receives a logical low.

the current flows from VCC to the input pin and also to the
resistor. Therefore, the input pin receives a logical high. The
resistor in this circuit is called pull-down resistor. The typical
pull-down resistor value is 1–10kΩ.

� Active-low: the active-low button circuit is shown in Figure 3.2.
In this circuit, the VCC is connected to an input pin through a
resistor, so the current can flow to the input pin. Therefore, it

CHAPTER 3. DIGITAL INPUT 23

receives a logical high. When the button is pressed, the current
flows through the button, because the button’s resistance is
almost zero, and the input pin has high impedance. Therefore,
the input pin receives a logical low. The resistor in this circuit
is called pull-up resistor. The typical pull-up resistor value is
1–10kΩ.

3.4 Example Code: Read a Button State

In this example code, we are going to read a button state using the
ESP32. The button is connected between the pin D12 and the GND
of the DOIT Esp32 DevKit v1. We use the active-low button circuit
with internal pull-up resistor. You also need an LED that is used as
an indicator of the button state. In this case, you are going to use the
on-board LED. The code is shown in Listing 3.1.

Listing 3.1. Read a button state

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 8 Mar 2020
3

4 void setup()
5 {
6 // Set GPIO pin as output for on-board LED
7 pinMode(2, OUTPUT);
8 // Set GPIO pin as input with pull-up resistor for button
9 pinMode(12, INPUT_PULLUP);

10 }
11

12 void loop()
13 {
14 // *** Read button state ***
15 if (digitalRead(12) == LOW)
16 {
17 // If button is pressed, then turn on the LED
18 digitalWrite(2, HIGH);

CHAPTER 3. DIGITAL INPUT 24

19 }
20 else
21 {
22 // If button is not pressed, then turn off the LED
23 digitalWrite(2, LOW);
24 }
25 }

Here is the step-by-step to read a button state with digital input using
the ESP32 Arduino:

1. First, you need to configure the GPIO pin of the on-board LED
as output as in line 7.

2. Then, you need to configure a GPIO pin as input. In line 9, you
need to configure pin D12 as input with internal pull-up resistor
by calling pinMode function.

3. Finally, in line 15, you need to read the state of the input pin
by calling the digitalRead function.

4. If the button state is LOW, it means the button is pressed (be-
cause it is an active-low circuit). So, you need to turn on the
LED as in line 18. Otherwise, you need to turn off the LED as
in line 23.

3.5 Summary

In this chapter, you have learned how to configure a GPIO as a digital
input. It reads a logical high or logical low voltage from external
circuit. In this case, we use button as the example, but you can
change it to other components that produce digital output.

Chapter 4

Serial I/O

What will you learn in this chapter?

� Concept of serial communication.

� Use serial I/O to transfer data between ESP32 and PC.

4.1 Serial Communication

In this chapter, we begin to discuss how microcontollers or computers
actually talk to each other. There are rules (protocols) that define
the encoding of data into voltage pulses and the decoding of voltage
pulses back into data. There are many protocols available, such as
UART, SPI, I2C, USB, etc. This chapter focuses to the simplest serial
protocol, which is the universal asynchronous receive and transmit
(UART).

In UART protocol, the data bits are sent one bit at a time. This pro-
tocol is widely used for communication between an embedded device
and a laptop/PC. On the laptops/PCs side, the serial communication

25

CHAPTER 4. SERIAL I/O 26

Figure 4.1. UART data frame.

is done through the DB9 RS232 port or the USB port (by using a USB
to UART bridge). However, on modern laptops/PCs, the DB9 RS232
port is not usually available, so the UART over USB is more common.
On the embedded devices side, it is also common to use the UART
over USB (mini or micro) port.

The UART protocol uses two wires for sending and receiving data,
namely TX and RX. The UART data frame is shown in Figure 4.1.
The length of data bits of each frame is 5–9 data bits with LSB first
configuration. The commonly used length is 8 bits (1 byte). Then,
there are start bit and stop bit, which are used to indicate where the
first and last data bit is, respectively. The start bit is 0, and the stop
bit is 1. The length of the stop bit can be configured either 1, 1.5, or
2 bits. The parity bit is an optional bit that is used for error detection.
There are two types of parity: even parity and odd parity. There are
several standards for the data speed (baud rate), such as 1200, 2400,
4800, 9600, 19200, 38400, 57600, and 115200 bps.

4.2 ESP32 UART Peripheral

The ESP32 has three UART controllers. They are implemented as
hardware on the ESP32 chip. They handle timing requirements and
data framing of the UART protocol. Each of them can be indepen-
dently configured with parameters, such as baud rate, data bit length,
number of stop bit, parity bit, etc. The TX and RX of UART con-
trollers have default GPIO pins, but they can also be logically mapped

CHAPTER 4. SERIAL I/O 27

to any of the available GPIO pins. The GPIO pins work at 3.3V TTL
level.

In ESP32 Arduino, there are several important methods1 for serial
I/O: begin, print methods, and read methods. The begin method
is defined as

void begin(unsigned long baud,
uint32_t config=SERIAL_8N1,
int8_t rxPin=-1,
int8_t txPin=-1);

This method is used to configure the UART. It has four input argu-
ments:

� baud: baud rate, e.g. 9600, 19200, etc.

� config: data, parity, and stop bit, e.g. SERIAL 8N1. See
the esp32-hal-uart.h for available definitions.

� rxPin and txPin: RX GPIO pin and TX GPIO pin, respec-
tively. The pin -1 means that it uses the defult GPIO pin.

The last three input arguments are optional because they have default
arguments. For defult usage, i.e. to send or receive data to or from
serial monitor, you need to provide only the first input argument, which
is the baud rate.

4.2.1 Serial Print

There are several print methods that can be used for sending data to
the serial output: print, println, and printf. You can pass any
printable data type as their input arguments. The printf method

1 A method and a function are the same, with different terms. The term ’method’
is used in object-oriented programming. A method is a function associated with
a class.

CHAPTER 4. SERIAL I/O 28

Table 4.1. The commonly used format specifiers [15].

Specifier Output Example

%d or %i Signed decimal integer 392
%x Unsigned hexadecimal integer 7fa
%X Unsigned hexadecimal integer (uppercase) 7FA
%o Unsigned octal 610
%f Decimal floating point 392.65
%c Character a
%s String of characters sample

Table 4.2. The example of commonly used sub-specifiers [15].

Sub-specifier Output Example

%08d Preceding with zeros 00001977
%#x Preceding with 0x 0x7fa
%.2f Number of digit after decimal point 3.14

requires format specifiers. The format specifiers start with a % char-
acter, and indicate the location to translate a piece of data (char, int,
float, etc.) to characters. The commonly used format specifiers are
shown in Table 4.1. The specifiers can also contain sub-specifiers,
which are optional. The example of commonly used sub-specifiers are
shown in Table 4.2. The print methods are part of Stream class that
is defined in Stream.h and Stream.cpp.

CHAPTER 4. SERIAL I/O 29

How to print a number in binary?

The printf method is only able to print a number in base 8 (octal), 10

(decimal), and 16 (hexadecimal), so there is no specifier for binary inte-

ger. Alternatively, you can use the print or println method, which

has an optional second parameter specifies the base to use. The op-

tional second parameters are BIN, OCT, DEC, and HEX. For example,

Serial.print(78, BIN) gives ”1001110”.

4.2.2 Serial Read

There are several read methods that can be used for receiving data
from the serial input: readBytes, readBytesUntil, readString,
and readStringUntil. The readBytes and readBytesUn
til methods are defined as

size_t readBytes(char *buffer, size_t length);
size_t readBytesUntil(char terminator,

char *buffer,
size_t length);

They are used for reading characters (char or uint8 t) from internal
stream buffer. The readBytesUntil method reads data bytes until
it finds the terminator character. It returns the number of characters
placed in the buffer.

The readString and readStringUntil methods are defined as

String readString();
String readStringUntil(char terminator);

They are used for reading a string from internal stream buffer. The
readStringUntil method reads a string until it finds the termi-
nator character.

CHAPTER 4. SERIAL I/O 30

The read methods are part of Stream class that is defined in Stream.
h and Stream.cpp.

4.3 Example Code: Serial Print

In this example code, we are going to print a message to the serial
monitor. The code is shown in Listing 4.1.

Listing 4.1. Serial print

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 22 Feb 2020
3

4 void setup()
5 {
6 // Initialize serial port
7 Serial.begin(115200);
8 }
9

10 void loop()
11 {
12 // Print text
13 Serial.println("Hello, World!");
14 delay(1000);
15 }

Here is the step-by-step to print a message to the serial monitor:

1. First, you need to configure the UART with a baud rate of
115200 as in line 7.

2. Then, you need to print the message as in line 13.

3. Finally, you need to add a delay of one second as in line 14. So,
the message in printed only once every one second.

CHAPTER 4. SERIAL I/O 31

Note that the Serial object is never instantiated in this file. This is
because the Serial is an extern object that is already instantiated
in the HardwareSerial.h file. After you upload the code to the
ESP32, you can open serial monitor in the Arduino IDE, and set the
baud rate to 115200.

4.4 Example Code: Serial Read

In this example code, we are going to read a message from the serial
monitor. Then, we are going to send back (echo) the message to the
serial monitor. The code is shown in Listing 4.2.

Listing 4.2. Serial read

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 8 Mar 2020
3

4 void setup()
5 {
6 // Initialize serial port
7 Serial.begin(115200);
8 }
9

10 void loop()
11 {
12 // If there is data in receive buffer
13 if (Serial.available() > 0)
14 {
15 // Read string from receive buffer
16 String input = Serial.readString();
17 // Print to serial monitor
18 Serial.print(input);
19 }
20 }

CHAPTER 4. SERIAL I/O 32

Here is the step-by-step to read a message from the serial monitor:

1. First, you need to configure the UART with a baud rate of
115200 as in line 7.

2. Then, in main loop, you need to check whether there is data or
not in the receive buffer as in line 13.

3. If there is data in the receive buffer, then you need to read the
data by calling readString method as in line 16.

4. Finally, in line 18, you need to send back the message to the
serial monitor.

4.5 Summary

In this chapter, you have learned how to use the UART for serial
communication between ESP32 and PC. Both of them can send and
receive data. We will use this serial communication mainly for debug-
ging.

Chapter 5

Analog Output

What will you learn in this chapter?

� Concept of analog output.

� Use analog output to dim an LED.

5.1 Varying the Output Voltage

The world we live in is an analog one. It is more than simply turn a
device on and off. For example, sometimes you may want to control
the brightness of a lamp, or change the volume of a speaker, or change
the speed of a fan. So, you need to varying the output, which is called
analog output.

Microcontrollers are digital components. Without an additional com-
ponent, microcontrollers can’t produce an analog voltage. They can
only produce logic high or low voltage. In ESP32 case, the logic high
is 3.3V and the logic low is 0V.

There are two techniques to produce analog voltage from microcon-

33

CHAPTER 5. ANALOG OUTPUT 34

trollers:

� Pulse width modulation (PWM): in this technique, you create
a ”fake” analog voltage. You pulse your digital output pin high
and low for a specific time. By using a very small time, a few
microseconds or milliseconds, you can create a pseudo-analog
voltage. Over time, the average voltage of the pulse can be a
range of values between logic high and low.

� Digital-to-analog conversion: in this technique, you create a
”real” analog voltage. You use a component called digital-to-
analog converter (DAC). A DAC converts a digital value to an
analog voltage.

Many microcontrollers do not have on-chip DAC. This is because the
things that microcontrollers typically control, such as LED or DC mo-
tor, can be controlled with PWM technique. Unless you are doing
high quality audio or signal processing, the on-chip or external DAC
is not needed. PWM technique is very common to be used in micro-
controllers.

5.2 Pulse Width Modulation

Pulse width modulation (PWM) is a square wave, which the logic high
and low duration can be varied. Figure 5.1 shows an illustration of
PWM signals. The time the digital output is high is called pulse width.
The ratio of pulse width to the square wave period is called duty cycle.
If you reduce the pulse width, you get a lower analog voltage, and vice
versa. The pseudo-analog output is the average voltage of the pulse
width. For example, if the duty cycle is 50 percent, the average voltage
is half the total voltage.

CHAPTER 5. ANALOG OUTPUT 35

Figure 5.1. PWM with several duty cycles. Retrieved September 11, 2018, from
caferacersjpg.com.

5.3 ESP32 LEDC Peripheral

The ESP32 has a LED PWM controller (LEDC) peripheral. It is
primarily designed to control the intensity of LEDs, but it can also be
used to generate PWM signals for other purposes as well. It has 16
independent channels with configurable periods and duties.

In ESP32 Arduino, there are three important functions for LEDC: led
cSetup, ledcAttachPin, and ledcWrite. The ledcSetup
function is defined as

double ledcSetup(uint8_t chan, double freq,
uint8_t bit_num);

which is used to configure the PWM properties. It takes three input
arguments: PWM channel, frequency, and duty cycle resolution.

The ledcAttachPin function is defined as

void ledcAttachPin(uint8_t pin, uint8_t chan);

which is used to specify to which GPIO pin the PWM output will
appear on. It takes two input arguments: GPIO pin and the PWM
channel.

CHAPTER 5. ANALOG OUTPUT 36

The ledcWrite function is defined as

void ledcWrite(uint8_t channel, uint32_t duty);

which is used to set duty cycle of the PWM output. It takes two input
arguments: the PWM channel and duty cycle value.

Those functions are defined in the ESP32 Arduino core in the esp32-
hal-ledc.h and esp32-hal-ledc.c.

5.4 Example Code: Dim an LED with PWM

The easiest way to see PWM in action is to create an example code
to dim an LED. The code is shown in Listing 5.1.

Listing 5.1. Dim an LED with PWM

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 29 Feb 2020
3

4 // On-board LED’s GPIO pin
5 #define LED_ON_BOARD 2
6

7 // PWM parameters
8 const int channel = 0;
9 const int freq = 1000;

10 const int res = 10;
11

12 void setup()
13 {
14 // Configure PWM
15 ledcSetup(channel, freq, res);
16 // Attach the PWM channel to the LED
17 ledcAttachPin(LED_ON_BOARD, channel);
18 }
19

20 void loop()

CHAPTER 5. ANALOG OUTPUT 37

21 {
22 // *** Increase brightness ***
23 for (int i = 0; i <= 1023; i += 20)
24 {
25 ledcWrite(channel, i);
26 delay(25);
27 }
28 // *** Decrease brightness ***
29 for (int i = 1023; i >= 0; i -= 20)
30 {
31 ledcWrite(channel, i);
32 delay(25);
33 }
34 }

Here is the step-by-step to dim an LED with PWM using the ESP32
Arduino:

1. First, you need to choose a PWM channel from 16 available
channels (from 0 to 15). For example, in line 8, we use PWM
channel 0.

2. Then, you need to set the PWM frequency. In line 9, we use a
frequency of 1000 Hz.

3. After that, you need to set the duty cycle resolution. In line 10,
we use 10-bit resolution. So, the PWM has 210 = 1024 (from
0 to 1023) discrete levels.

4. Then, you need to pass those parameters as the input arguments
to the ledcSetup function as in line 15.

5. Next, you need to attach the PWM channel to the LED pin by
calling ledcAttach function as in line 17. Here, we use the
on-board LED, which is wired to pin D2.

CHAPTER 5. ANALOG OUTPUT 38

6. Then, in line 23-27, the brightness of the LED is gradually
increased. The brightness is increased from 0 to 1023 by 20
levels every 25 ms. We call the ledcWrite function to set the
duty cycle.

7. Finally, in line 29-33, you need to do the same procedure as
in the previous step to gradually decrease the brightness of the
LED.

After you program the ESP32, the brightness of the on-board LED will
be gradually increased and decreased. Actually, the LED is blinking
on and off rather than dimming. This is because our eyes can’t detect
the changes if it is blinking too fast. To our eyes, the LED appears to
be dimmed. If you use PWM frequency that is slow enough for our
eyes to see (for example 1 Hz), you will see that the LED is blinking.

5.5 Summary

In this chapter, you have learned how to generate an analog output
with PWM technique. It produces a pseudo-analog output that can
be used to change the brightness of the LED.

Chapter 6

Analog Input

What will you learn in this chapter?

� Concept of analog input.

� Use analog input to read a trimpot.

6.1 Varying the Input Voltage

As you have seen in the previous chapter, the world we live in is an
analog one. It is not just binary: on or off. There are many contin-
uously variable values, such as voltage, current, light intensity, force,
etc. In order to read this continuously variable values, microcontrollers
need to have input that can read analog voltage, which is called analog
input.

Microcontrollers are digital components. Without an additional com-
ponent, microcontrollers can’t read an analog voltage. They can only
read logic high or low voltage. In ESP32 case, the logic high is 3.3V
and the logic low is 0V. So, they need an additional component to read

39

CHAPTER 6. ANALOG INPUT 40

Figure 6.1. Conversion between an analog voltage to a digital value.

the analog voltage, which is an analog-to-digital converter (ADC).
With ADC, microcontrollers can read varying voltage levels from, for
example variable resistors like potentiometers or analog sensors.

6.2 Analog-to-Digital Converter

Analog-to-digital Converter (ADC) is a component that converts an
analog voltage to a digital value. In mathematics, it is said that the
analog voltage consists of an infinite number of points between point
A and point B, for example between 0–5V. In Figure 6.1, you can see
that after 2.7V there are 2.71V, 2.718V, 2.7182V, and so on, but a
microcontroller can only represent a finite set of numbers (discrete
numbers). For example, 8-bit number can only represent numbers
from 0–255, so between 139 and 140 there is no other number.

CHAPTER 6. ANALOG INPUT 41

6.3 ESP32 ADC Peripheral

The ESP32 has two 12-bit ADCs. However, the second ADC is used
by the Wi-Fi. Therefore, the application can only use the second
ADC when the Wi-Fi is not used. The voltage range of the ADC
is between 0V and 3.3V. Because the resolution of this ADC is 12-
bit (212 = 4096), so the analog input voltage is assigned to a value
between 0 and 4095.

In ESP32 Arduino, there is an important functions for ADC—the
analogRead function. The analogRead function is defined as

uint16_t analogRead(uint8_t pin);

which is used to read the analog input. It takes an input argu-
ment—the analog input pin. This function is defined in the ESP32
Arduino core in the esp32-hal-adc.h and esp32-hal-adc.c.

6.4 Example Circuit: Voltage Divider

A voltage divider is a simple circuit, which divides a higher voltage
into a lower one. It consists of two series resistors. An input voltage
is applied across the series of two resistors, and the output voltage
is between the two resistors, which is a fraction of the input voltage.
Figure 6.2(a) shows an example of a voltage divider circuit. Let Vin be
input voltage and Vout be output voltage. The relationship between
Vin and Vout is given by

Vout = Vin
R2

R1 +R2
(6.1)

The Vout is directly proportional to the Vin and the ratio of R1 and
R2.

Voltage dividers are used in many applications. For example, a po-
tentiometer, which is a variable resistor that can be used to create an

CHAPTER 6. ANALOG INPUT 42

(a) (b)

Figure 6.2. Voltage divider: (a) a example of a voltage divider circuit; (b) an
adjustable voltage divider.

adjustable voltage divider. The internal of a potentiometer is a resistor
that has a wiper. The wiper can be moved to adjust the ratio between
both halves as shown in Figure 6.2(b). If a potentiometer is turned
all the way in one direction, the output voltage may be zero; turned
to the other side, the output voltage approaches the input voltage.

6.5 Example Code: Read a Trimpot

In this example code, we are going to read analog voltage from a
trimmer potentiometer (trimpot1) by using the ADC. The output pin
of the trimpot is connected to the pin D27, while the other two pins
of the trimpot are connected to the VCC and GND, respectively. A
trimpot has no anode or cathode pin, so it doesn’t matter which end
you connect to VCC and GND. The only difference is the direction of
rotation, clockwise to increase the output voltage and counterclock-
wise to decrease the output voltage, or vice versa. The code is shown
in Listing 6.1.

1 A trimpot is the same as potentiometer. The only key difference between a
trimpot and a potentiometer is size and shape. Trimpots usually have smaller
form factor compared to potentiometers.

CHAPTER 6. ANALOG INPUT 43

Listing 6.1. Read a trimpot value

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 8 Mar 2020
3

4 void setup()
5 {
6 // Initialize serial port
7 Serial.begin(115200);
8 }
9

10 void loop()
11 {
12 // Read trimpot value using ADC
13 int trimpot = analogRead(27);
14 // Print the value to the serial monitor
15 Serial.println(trimpot);
16 delay(1000);
17 }

Here is the step-by-step to read a trimpot with ADC:

1. First, you need to configure UART with a baud rate of 115200
as in line 7.

2. Then, you need to read the ADC by using the analogRead
function as in line 13. You need to pass the pin number (27)
that is connected to the trimpot as input argument of the func-
tion.

3. Finally, in line 15, you need to send the trimpot value to the
serial monitor, and also you need to add a delay of one second
as in line 16.

You can open the serial monitor to check the trimpot value. As you
turn the trimpot clockwise or counterclockwise, the trimpot value will

CHAPTER 6. ANALOG INPUT 44

Figure 6.3. Serial plotter for plotting the trimpot value.

be changed. You can also use Arduino serial plotter to plot the trimpot
value as shown in Figure 6.3.

6.6 Summary

In this chapter, you have learned how to read an analog input with
ADC. The input voltage range of the ESP32 ADC is between 0V to
3.3V that corresponds to the discrete values between 0 to 4095 in the
default 12-bit mode.

Chapter 7

Sensors

What will you learn in this chapter?

� Concept of sensors.

� Use the DHT11 digital temperature and humidity sensor.

� Use the DS1307 real-time clock.

7.1 Sensing Physical Properties

In the real world, there are many physical properties. Examples of
physical properties include: temperature, light, mass, electric current,
magnetic field, etc. These physical properties can’t be sensed directly
using microcontrollers. We need to use additional components called
sensor. A sensor converts a particular physical property to electric volt-
age. For example, a temperature sensor converts room temperature
to voltage, for example between 0V and 3.3V.

There are many sensors available today. Many of them come as mod-
ules (they have extra electronic circuitry along with the sensor) as

45

CHAPTER 7. SENSORS 46

Figure 7.1. Sensor modules. Retrieved April 11, 2020, from ebay.com.

shown in Figure 7.1. Here is the list of several popular sensor mod-
ules:

� Color sensors: TCS3200, TCS34725.

� Gas sensors: MQ2, MQ3, MQ4, MQ5, MQ6, MQ7, MQ8,
MQ9, MQ135.

� Light sensors: photoresistor, photodiode.

� Passive infrared sensors: HC-SR501, HC-SR505.

� Real-time clock (RTC) sensors: DS1307, DS3231.

� Temperature sensors: LM35, DS18B20, DHT11, DHT22.

� Ultrasonic distance sensors: HC-SR04, HY-SRF05.

CHAPTER 7. SENSORS 47

Some of these sensors use digital interface, such as 1-wire, I2C, SPI,
etc. In this case, you don’t need to use ADC. However, there are also
sensors that use analog interface, so you do need to use ADC.

7.2 Example Code: DHT11 Sensor

DHT11 is a temperature and humidity sensor. This sensor is quite
slow, but very low cost, so it is great for hobbyists. Here are the
specifications [16]:

� 3 to 5V power and I/O

� 2.5mA max current use during conversion (while requesting data)

� Good for 20-80% humidity readings with 5% accuracy

� Good for 0-50◦C temperature readings ±2◦C accuracy

� No more than 1 Hz sampling rate (once every second)

� Body size 15.5mm x 12mm x 5.5mm

� 4 pins with 0.1” spacing

This sensor can either be purchased as a sensor or as a module. It uses
just one wire to transmit digital data to the microncontroller. There
is a library [17] for this sensor in Arduino, so you don’t have to deal
directly with the communication protocol.

The connection between DHT11 and ESP32 is described in Table 7.1.
Here the DATA pin of the DHT11 is connected to pin D22, but you
can connect it to any other digital pin.

In this example code, we are going to read the temperature and hu-
midity values from the DHT11 sensor. Then, the values are printed
to the serial terminal. The code is shown in Listing 7.1.

CHAPTER 7. SENSORS 48

Table 7.1. The connection between DHT11 and ESP32.

DHT11 Pins ESP32 Pins

VCC (1) 3V3
DATA (2) D22

NC (3) -
GND (4) GND

Listing 7.1. Read temperature and humidity from DHT11

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 23 Feb 2020
3

4 #include <DHT.h>
5

6 #define DHTPIN 22
7 #define DHTTYPE DHT11
8

9 // Setup DHT pin and type
10 DHT dht(DHTPIN, DHTTYPE);
11

12 void setup()
13 {
14 // Initialize serial port
15 Serial.begin(115200);
16 // Initialize DHT sensor
17 dht.begin();
18 }
19

20 void loop()
21 {
22 // Read temperature
23 float temp = dht.readTemperature();
24 // Read humidity
25 float hum = dht.readHumidity();
26

CHAPTER 7. SENSORS 49

27 // Print temperature
28 Serial.print("Temperature: ");
29 Serial.print(temp);
30 Serial.print("C ");
31 Serial.print("Humidity: ");
32 Serial.print(hum);
33 Serial.println("%");
34

35 // Maximum sampling rate of DHT11 is 1Hz
36 // So, the minimum delay is one second
37 delay(1000);
38 }

Here is the step-by-step to read the DHT11:

1. First, you need to install the DHT library [17], and import the
library as in line 4.

2. Then, you need to define the data pin and DHT type as in line
6 and 7.

3. After that, you need to instantiate the DHT class as in line 10.
It takes two input arguments: DHTPIN and DHTTYPE.

4. Next, in line 17, you need to call begin method to initialize
the DHT sensor.

5. Then, in line 23 and 25, you need to read the temperature and
humidity by calling readTemperature and readHumidity
methods, respectively.

6. Finally, in line 28-33, you need to print the temperature and
humidity to the serial monitor.

CHAPTER 7. SENSORS 50

Table 7.2. The connection between DS1307 and ESP32.

DS1307 Pins ESP32 Pins

VCC 3V3
SCL D32
SDA D33
GND GND

7.3 Example Code: DS1307 Real-Time Clock

DS1307 is a real-time clock (RTC) that is used to keep track of time.
It can accurately keep track of seconds, minutes, hours, days, months,
and years. Here are the specifications [18]:

� 56-byte, battery-backed, nonvolatile (NV) RAM for data storage

� Two-wire (I2C) serial interface

� Programmable squarewave output signal

� Automatic power-fail detect and switch circuitry

� Consumes less than 500nA in battery backup mode with oscil-
lator running

It uses the I2C protocol to control the module. There is a library [19]
for this module in Arduino, so you don’t have to deal directly with the
communication protocol.

The connection between DS1307 and ESP32 is described in Table 7.2.
The SCL (clock) and SDA (data) pins are the I2C pins.

In this example code, we are going to read timestamp from the DS1307.
Then, the timestamp is printed to the serial terminal. The code is
shown in Listing 7.2.

CHAPTER 7. SENSORS 51

Listing 7.2. Read timestamp from DS1307

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 8 Mar 2020
3

4 #include <Wire.h>
5 #include <RtcDS1307.h>
6

7 // I2C pins
8 #define I2C_SDA 33
9 #define I2C_SCL 32

10

11 // RTC object declaration
12 RtcDS1307<TwoWire> rtc(Wire);
13

14 void setup()
15 {
16 // Initialize serial port
17 Serial.begin(115200);
18

19 // Initialize I2C pins
20 Wire.begin(I2C_SDA, I2C_SCL, 400000);
21

22 // Initialize RTC
23 rtc.Begin();
24 // *** Set RTC date and time to code compiled time ***
25 RtcDateTime compiled = RtcDateTime(__DATE__, __TIME__);
26 rtc.SetDateTime(compiled);
27 rtc.SetIsRunning(true);
28 }
29

30 void loop()
31 {
32 // Read RTC date and time
33 RtcDateTime now = rtc.GetDateTime();
34 // Print RTC date and time to serial monitor
35 Serial.printf("%04d/%02d/%02d %02d:%02d:%02d\n",

CHAPTER 7. SENSORS 52

36 now.Year(), now.Month(), now.Day(),
37 now.Hour(), now.Minute(), now.Second());
38 delay(1000);
39 }

Here is the step-by-step to read the DS1307:

1. First, you need to install the RTC library [19], and import the
library along with the Wire (I2C) library as in line 4 and 5.

2. Then, you need to instantiate the RtcDS1307 class as in line
12. It takes an input argument—the Wire object.

3. After that, you need to initialize the I2C by calling the begin
method as in line 20. It takes three input arguments: data pin,
clock pin, and I2C clock frequency.

4. Next, in line 25-27, you need to set the DS1307’s time to the
compiled time, and then start the DS1307. The SetIsRun
ning method is used to start or stop the DS1307.

5. Finally, in line 33-38, you need to read the current timestamp
and print it to the serial monitor every 1 second.

7.4 Summary

In this chapter, you have learned about sensors. You have learned
the DHT11 temperature and humidity sensor. You have also learned
the DS1307 RTC. Both of them use digital interface to the microcon-
troller.

Part II

Wi-Fi Programming

53

Chapter 8

Wi-Fi Access Point

What will you learn in this chapter?

� Concept of Wi-Fi networking and Wi-Fi access point.

� Connect a Wi-Fi device to an ESP32 access point.

8.1 Wi-Fi Network

Wi-Fi network is a wireless networking technology that enables multi-
ple devices, such as computers, laptops, tablets, smartphones, gaming
devices, televisions, etc., to connect to the Internet and each other.
It is the easiest way to setup an Internet network without obtrusive
cables. However, in theory, Wi-Fi network is less secure than the Eth-
ernet network. Because in Wi-Fi network, the data travel through the
air, it is possible to be intercepted by attacker. In Ethernet network, it
is impossible to do this attack because attacker need physical access
to do so.

Figure 8.1 shows an example of a Wi-Fi network. Laptops and phones

54

CHAPTER 8. WI-FI ACCESS POINT 55

Figure 8.1. An example of Wi-Fi network.

connect to a Wi-Fi network via an access point (AP). A Wi-Fi network
consists of an AP and multiple stations.

� Access point: a device that allows Wi-Fi devices (stations) to
connect to each other, to a wired network, and to the Internet.

� Station: devices with Wi-Fi capability, such as computers, lap-
tops, tablets, smartphones, gaming devices, televisions, etc.

Todays, many APs come with integrated router and modem. These are
called wireless modem routers. Some of these also supports Internet
connection via 3G/4G network.

Beside that, there is also a technology called wireless ad hoc network.
In ad hoc network, the stations can connect to each other without
using an AP. For example, it can be used for peer-to-peer file transfer
or multiplayer video game. The wireless ad hoc network is beyond the
scope of this book.

CHAPTER 8. WI-FI ACCESS POINT 56

8.2 Access Point

A access point (AP) is a device in Wi-Fi network that allows Wi-Fi
stations to connect to each other, to a wired network, and to the
Internet. The stations connect to each other via this AP, rather than
directly to each other. There is also a term called soft AP. It is an
abbreviated term for software enabled AP. The software enables a
station which hasn’t been specifically made to be an AP to become
an AP.

8.3 ESP32 Wi-Fi Networking: Access Point

ESP32 Wi-Fi implements TCP/IP, MAC, baseband, and radio. It
supports the IEEE 802.11 b/g/n specifications. The Wi-Fi supports
three modes:

� AP mode: this mode is also called soft AP mode. In this mode,
stations connect to the ESP32.

� Station mode: this mode is also called STA mode or Wi-Fi
client mode. In this mode, the ESP32 connects to an AP.

� Combined AP-STA mode: in this mode, the ESP32 is both
an AP and a station connected to another AP.

By configuring the ESP32 in AP mode, any Wi-Fi devices can connect
directly to the ESP32 without the need of another Wi-Fi AP. This
mode is shown in Figure 8.2.

In this chapter, we are going to focus on the AP mode. We will
get into the station mode in the next chapter. First of all, in order
to program the ESP32 Wi-Fi using ESP32 Arduino core, you should
include the WiFi.h library:

#include <WiFi.h>

CHAPTER 8. WI-FI ACCESS POINT 57

Figure 8.2. ESP32 in AP mode.

There are two important methods to setup ESP32 as AP: softAP
and softAPConfig. The softAP method is defined as

bool softAP(const char* ssid,
const char* passphrase = NULL,
int channel = 1,
int ssid_hidden = 0);

This method is used to start the ESP32 in AP mode. It takes four
input arguments:

� ssid: SSID name (AP name). Maximum of 63 characters.

� passphrase: AP password. Minimum of 8 characters.

� channel: Wi-Fi channel number (1-13).

� ssid hidden: 0 = broadcast SSID, 1 = hide SSID.

The last three input arguments are optional because they have default
arguments. So, it means that this method can be called with just
providing one input argument—the SSID name.

The softAPConfig method is defined as

bool softAPConfig(IPAddress local_ip,
IPAddress gateway,

CHAPTER 8. WI-FI ACCESS POINT 58

IPAddress subnet);

This method is used to set the IP address, gateway, and subnet of the
ESP32. It takes those parameters as the input arguments. By default,
ESP32 uses the default IP address (192.168.4.1).

The ESP32 AP methods are defined in the ESP32 Arduino core in the
WiFiAP.h and WiFiAP.c.

8.4 Example Code: Access Point Mode

In this example code, you are going to set the ESP32 in AP mode.
Then, you print (to serial terminal) how many stations that are con-
nected to this AP. The code is shown in Listing 8.1.

Listing 8.1. Wi-Fi AP mode

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 29 Feb 2020
3

4 #include <WiFi.h>
5

6 const char ssid[] = "ESP32-AP";
7 const char pass[] = "esp32accesspoint";
8

9 IPAddress ip(192,168,1,1);
10 IPAddress gateway(192,168,1,1);
11 IPAddress subnet(255,255,255,0);
12

13 int currentNumOfStation;
14

15 void setup()
16 {
17 // Setup serial communication
18 Serial.begin(115200);
19

20 // *** Create a WiFi access point ***

CHAPTER 8. WI-FI ACCESS POINT 59

21 Serial.print("Setting AP ... ");
22 Serial.println(
23 WiFi.softAP(ssid, pass) ? "Ready" : "Failed!");
24 Serial.print("Setting AP configuration ... ");
25 Serial.println(
26 WiFi.softAPConfig(ip, gateway, subnet) ?
27 "Ready" : "Failed!");
28

29 // *** Print WiFi AP configuration ***
30 Serial.printf("IP address: %s\n",
31 WiFi.softAPIP().toString().c_str());
32 Serial.printf("MAC address: %s\n",
33 WiFi.softAPmacAddress().c_str());
34 }
35

36 void loop()
37 {
38 // *** Print number of stations that are
39 // connected to AP ***
40 if (WiFi.softAPgetStationNum() != currentNumOfStation)
41 {
42 currentNumOfStation = WiFi.softAPgetStationNum();
43 Serial.printf("Stations connected to AP: %d\n",
44 currentNumOfStation);
45 }
46 }

CHAPTER 8. WI-FI ACCESS POINT 60

Here is the step-by-step to set the ESP32 in AP mode:

1. First, you need to include the library WiFi.h as in line 4.

2. Then, you need to define your AP name and password as in line
6-7. You can modify the name and password to whatever you
want.

3. After that, you need to define your IP addresses as in line 9-11.

4. Next, you need to pass the AP name and password as input
arguments of the softAP method as in line 22-23. If this
method returns true, it means that the AP name and password
are successfully configured.

5. Next, you need to pass the IP addresses as the input arguments
of the softAPConfig method as in line 25-27. It returns
true, if the IP addresses are successfully configured.

6. Then, in line 30-33, you need to call softAPIP and softAP
macAddress methods in order to print the ESP32’s current IP
and MAC address.

7. Finally, in line 40-45, you can get the number of stations that
are connected to ESP32 by calling softAPgetStationNum
method. We store the number of stations in variable current
NumOfStation. The value of this variable is updated and
printed only if it changes.

Note that the WiFi object is never instantiated in this file. This is
because the WiFi is an external object that is already instantiated in
the WiFi.h file with extern keyword. Figure 8.3 shows the output
logs of this example code in serial terminal. It shows two stations are
connected.

CHAPTER 8. WI-FI ACCESS POINT 61

Figure 8.3. An example of ESP32 AP logs in serial terminal.

8.5 Summary

In this chapter, you have learned how to set ESP32 in AP mode. It
allows stations, such as laptops or smartphones, to connect to the
ESP32.

Chapter 9

Wi-Fi Station

What will you learn in this chapter?

� Concept of Wi-Fi station.

� Connect an ESP32 station to a Wi-Fi access point.

9.1 Station

The previous chapter explained the concept of Wi-Fi network. A Wi-
Fi network can consist of an AP and multiple stations. The AP is a
device that allows stations to connect to each other. The stations can
be any devices that have Wi-Fi capability, such as computers, laptops,
tablets, smartphones, gaming devices, televisions, etc. Todays, many
smart home appliances also have Wi-Fi capability. These stations
connect to each other via the AP, rather than directly to each other.

62

CHAPTER 9. WI-FI STATION 63

Figure 9.1. ESP32 in station mode.

9.2 ESP32 Wi-Fi Networking: Station

ESP32 Wi-Fi implements TCP/IP, MAC, baseband, and radio. It
supports the IEEE 802.11 b/g/n specifications. The Wi-Fi supports
three modes:

� AP mode: this mode is also called soft AP mode. In this mode,
stations connect to the ESP32.

� Station mode: this mode is also called STA mode or Wi-Fi
client mode. In this mode, the ESP32 connects to an AP.

� Combined AP-STA mode: in this mode, the ESP32 is both
an AP and a station connected to another AP.

In this chapter, we are going to focus on the station mode. In station
mode, you need to connect the ESP32 station to a Wi-Fi AP. The
topology is shown in Figure 9.1. The ESP32 station can talk to other
stations via the AP.

First of all, in order to program the ESP32 Wi-Fi using ESP32 Arduino
core, you should include the WiFi.h library:

#include <WiFi.h>

CHAPTER 9. WI-FI STATION 64

There are three important methods to setup ESP32 as station: mode,
begin, and waitForConnectResult. The mode method is de-
fined as

bool mode(wifi_mode_t m);

This method is used to set the mode of ESP32. It takes one in-
put argument m, which is the ESP32 mode (WIFI OFF, WIFI STA,
WIFI AP, or WIFI AP STA). It returns true when the ESP32 is
successfully configured.

The begin method is defined as

wl_status_t begin(char* ssid,
char *passphrase = NULL,
int32_t channel = 0,
const uint8_t* bssid = NULL,
bool connect = true);

This method is used to start the ESP32 in station mode. It takes five
input arguments:

� ssid: SSID name of AP.

� passphrase: Password of AP (optional).

� channel: Wi-Fi channel of AP (optional).

� bssid: BSSID/MAC of AP(optional).

� connect: 0 = don’t connect to AP, 1 = connect to AP (op-
tional).

This method can be called by providing just one input argument, which
is the SSID name of AP, because the other input arguments are op-
tional. It returns Wi-Fi connection status, which is defined as

CHAPTER 9. WI-FI STATION 65

typedef enum {
WL_NO_SHIELD = 255,
WL_IDLE_STATUS = 0,
WL_NO_SSID_AVAIL = 1,
WL_SCAN_COMPLETED = 2,
WL_CONNECTED = 3,
WL_CONNECT_FAILED = 4,
WL_CONNECTION_LOST = 5,
WL_DISCONNECTED = 6

} wl_status_t;

The waitForConnectResult method is defined as

uint8_t waitForConnectResult();

This method is used to wait for Wi-Fi connection to reach a result.
It has no input argument, and returns one of the value defined in
wl status t.

The ESP32 station methods are defined in the ESP32 Arduino library
in the WiFiSTA.h and WiFiSTA.c.

9.3 Example Code: Station Mode

In this example code, you are going to set the ESP32 in station mode.
Then, you connect it to an AP. The code is shown in Listing 9.1.

Listing 9.1. Wi-Fi station mode

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 29 Feb 2020
3

4 #include <WiFi.h>
5

6 const char ssid[] = "Huawei-E5573";
7 const char pass[] = "huaweie5573";
8

CHAPTER 9. WI-FI STATION 66

9 void setup()
10 {
11 // Setup serial communication
12 Serial.begin(115200);
13

14 // *** Connect to a WiFi access point ***
15 Serial.printf("Connecting to %s ...\n", ssid);
16 WiFi.mode(WIFI_STA);
17 WiFi.begin(ssid, pass);
18 if (WiFi.waitForConnectResult() != WL_CONNECTED)
19 {
20 Serial.printf("WiFi connect failed! Rebooting ...\n");
21 delay(1000);
22 ESP.restart();
23 }
24 Serial.printf("Connected\n");
25

26 // *** Print WiFi station configuration ***
27 Serial.printf("SSID: %s\n", WiFi.SSID().c_str());
28 Serial.printf("RSSI: %d dBm\n", WiFi.RSSI());
29 Serial.printf("IP address: %s\n", WiFi.localIP()
30 .toString().c_str());
31 Serial.printf("Subnet mask: %s\n", WiFi.subnetMask()
32 .toString().c_str());
33 Serial.printf("Gateway: %s\n", WiFi.gatewayIP()
34 .toString().c_str());
35 Serial.printf("MAC address: %s\n", WiFi.macAddress()
36 .c_str());
37 }
38

39 void loop()
40 {
41 }

CHAPTER 9. WI-FI STATION 67

Here is the step-by-step to set the ESP32 in station mode:

1. First, you need to include the library WiFi.h as in line 4.

2. Then, you need to define the AP name and password as in line
6-7. You should modify the name and password to your Wi-Fi
AP’s or router’s.

3. After that, you need to set the ESP32 in station mode by calling
mode method as in line 16. Note that in the previous chapter
when you set the ESP32 in AP mode, you don’t have to call the
mode method because the default mode of the ESP32 is soft
AP.

4. Next, you need to pass the AP name and password as input
arguments of begin method as in line 17.

5. Then, in line 18-23, you need to wait until the ESP32 is con-
nected to the AP by calling the waitForConnectResult
method. If the ESP32 is not connected yet after 1 second, then
it will be restarted. If necessary, you can change the delay.

6. Finally, in line 27-36, you can print the Wi-Fi station configu-
ration, such as SSID, IP address, MAC address, etc.

You can use this example code as bare minimum code for configuring
the ESP32 in station mode. Figure 8.3 shows the output logs of this
example code in serial terminal.

CHAPTER 9. WI-FI STATION 68

Figure 9.2. An example of ESP32 station logs in serial terminal.

9.4 Summary

In this chapter, you have learned how to set ESP32 in station mode.
It is connected to an AP. It can talk to other stations via the AP.

Chapter 10

TCP Server

What will you learn in this chapter?

� Concept of TCP/IP model and TCP server.

� Create a TCP server on an ESP32 station.

10.1 Internet Protocol Suite

Internet protocol suite or commonly known as TCP/IP is a model used
in computer network. The model consists of communication protocols
that are grouped into several layers. The foundational protocols are
Transmission Control Protocol (TCP) and Internet Protocol (IP). This
is the reason why it is called TCP/IP model. The complete layers of
the model are defined as follows:

� Network interface: this is the first or the lowest layer of the
model. This layer converts the data into transmittable format.
So, it can be transmitted over physical communication media

69

CHAPTER 10. TCP SERVER 70

wired or wirelessly. Moreover, this layer is separated into two
layers: data link and physical.

The physical layer (PHY) is responsible to convert digital bits
(raw data) into electrical, radio, or optical signals. This layer
is usually implemented by a PHY chip. Examples of protocols
present in this layer are 1-wire, Bluetooth, CAN bus, Ethernet
PHY, I2C, LoRa, RS232, SPI, USB PHY, Wi-Fi PHY, etc.

The data link layer is concerned with reliable transmission of
data frames between two nodes connected by a physical layer.
This layer may be implemented by a chip. Examples of protocols
present in this layer are Ethernet Media Access Control (MAC)
(IEEE 802.3), Wi-Fi MAC (IEEE 802.11), ZigBee MAC (IEEE
802.15.4), Point-to-Point Protocol (PPP), etc.

� Internet: this is the second layer of the model. This layer is
responsible for managing a multi-node network. This layer is
concerned with transmission of data packet through a multi-
node network including addressing, routing, and traffic control.
Each node on a network has a unique address called Internet
Protocol (IP) address. So, the transmission of data packet can
be done by providing the content of packet and the address
of the destination node. The packet is also possibly routed
through intermediate routers. Examples of protocols present in
this layer are Internet Protocol (IPv4/IPv6), Internet Control
Message Protocol (ICMP), etc.

� Transport: this is the third layer of the model. This layer pro-
vides host-to-host communication service for applications. This
layer is responsible for providing a reliable communication service
between applications through flow control, segmentation/deseg-
mentation, and error control. This layer also provides multiplex-
ing (port), so that a single node can have multiple endpoints.
Examples of protocols present in this layer are Transmission Con-
trol Protocol (TCP), User Datagram Protocol (UDP), etc.

CHAPTER 10. TCP SERVER 71

� Application: this is the fourth layer of the model. This layer
provides communication protocols used by applications for ex-
changing data over the network. Examples of protocols present
in this layer are File Transfer Protocol (FTP), Hypertext Transfer
Protocol (HTTP), Secure Shell (SSH), MQ Telemetry Transport
(MQTT), Modbus, etc.

Furthermore, there are other networking models that model the com-
puter network, such as OSI model (seven layers), TCP/IP 5-layer ref-
erence model, etc. The number of layers varies between three and
seven.

10.2 TCP Server

TCP connections work in client-server model. The server creates a
TCP socket with a specified port number and waits for a connection
request from the client. Once a connection has been established, data
can be sent in either direction. The connection remains open until
either the client or server terminates the connection.

10.3 ESP32 TCP Server

In this chapter, we are going to focus on the TCP server. We will
get into the TCP client in the next chapter. A TCP server creates a
TCP socket that listen to a specified port and waits for a connection
request from the client.

First of all, in order to use TCP server in ESP32 Arduino core, you
should include the WiFi.h library:

#include <WiFi.h>

CHAPTER 10. TCP SERVER 72

In ESP32 Arduino Wi-Fi library, TCP server class is named as WiFiS
erver. The constructor1 of this class is defined as

WiFiServer(uint16_t port=80, uint8_t max_clients=4):
sockfd(-1),
_port(port),
_max_clients(max_clients),
_listening(false){}

The default port of TCP server is 80, and the maximum number of
clients is four.

There are two important methods to setup a TCP server in ESP32:
begin and available. The begin method is defined as

void begin();

This method is used to start the TCP server to listen on a specified
port.

The available method is defined as

WiFiClient available();

This method is used to accept a connection request from a client.
Once the connection has been accepted, it returns a TCP client object
which is named as WiFiClient.

The ESP32 TCP server methods are defined in the ESP32 Arduino
library in the WiFiServer.h and WiFiServer.c.

10.4 Example Code: TCP Server

In this example code, you are going to create a TCP server for control-
ling an LED from TCP client by sending specified commands. First,

1 A constructor is a method of a class which initializes the object of the class. It
has same name as the class itself.

CHAPTER 10. TCP SERVER 73

you need to set the ESP32 in station mode. Then, you connect it
to an AP. Next, you need to create a TCP server that listen on port
23. After that, you need to listen to an incoming command from the
client. Finally, you need to process the command. The code is shown
in Listing 10.1.

Listing 10.1. TCP server

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 1 Mar 2020
3

4 #include <WiFi.h>
5

6 // On-board LED’s GPIO pin
7 #define LED_ON_BOARD 2
8

9 const char ssid[] = "Huawei-E5573";
10 const char pass[] = "huaweie5573";
11

12 // TCP server port
13 const uint16_t port = 23;
14

15 // TCP server object declaration
16 WiFiServer server(port);
17

18 void setup()
19 {
20 // Set GPIO pin as output for on-board LED
21 pinMode(LED_ON_BOARD, OUTPUT);
22 // Setup serial communication
23 Serial.begin(115200);
24

25 // *** Connect to a WiFi access point ***
26 Serial.printf("Connecting to %s ...\n", ssid);
27 WiFi.mode(WIFI_STA);
28 WiFi.begin(ssid, pass);
29 if (WiFi.waitForConnectResult() != WL_CONNECTED)

CHAPTER 10. TCP SERVER 74

30 {
31 Serial.printf("WiFi connect failed! Rebooting ...\n");
32 delay(1000);
33 ESP.restart();
34 }
35 Serial.printf("Connected\n");
36 Serial.printf("IP address: %s\n", WiFi.localIP()
37 .toString().c_str());
38

39 // *** Start TCP server ***
40 server.begin();
41 Serial.printf("TCP server started at port %d\n", port);
42 }
43

44 void loop()
45 {
46 // Get TCP client
47 WiFiClient client = server.available();
48

49 // If a client connected
50 if (client)
51 {
52 Serial.printf("Client connected\n");
53 while (client.connected())
54 {
55 if (client.available())
56 {
57 // Read command from receive buffer
58 String cmd = client.readStringUntil(’\n’);
59

60 // *** Process the command ***
61 if (cmd == "LED+ON")
62 {
63 // Turn on LED
64 digitalWrite(LED_ON_BOARD, HIGH);
65 }
66 else if (cmd == "LED+OFF")

CHAPTER 10. TCP SERVER 75

67 {
68 // Turn off LED
69 digitalWrite(LED_ON_BOARD, LOW);
70 }
71 else if (cmd == "LED")
72 {
73 // Query the LED value
74 if (digitalRead(LED_ON_BOARD))
75 {
76 client.println("LED is on");
77 }
78 else
79 {
80 client.println("LED is off");
81 }
82 }
83 else
84 {
85 Serial.println("Unknown command");
86 }
87 }
88 }
89 Serial.printf("Client disconnected\n");
90 }
91 }

Here is the step-by-step to create a TCP server:

1. First, you need to define a port number for the TCP server, and
then you need to pass it into the WiFiServer object as in line
13 and 16.

2. Then, you need to set the GPIO for on-board LED, and then
you need to start the serial I/O as in line 21 and 23.

3. After that, in line 26 and 37, you need to set the ESP32 as a
station and connect it to an AP.

CHAPTER 10. TCP SERVER 76

4. Next, in line 40, you need to start the TCP server to listen to
the port 23 by calling the begin method.

5. Then, in line 47, you need to accept a connection request
from a client by calling the available method. It returns
the client object.

6. After that, in line 53-88, while the client is connected, the
server always waits for a command, then processes it.

7. The available method in line 55 is used to return the num-
ber of characters which have arrived in receive buffer.

8. In line 58, you need to read the characters from receive buffer
until you find the \n character, which is the newline character
that comes at the end of every command.

9. Finally, in line 61-86, you need to process the command. There
are three defined commands: LED+ON, LED+OFF, and LED.
The first two commands are used for turning on and off the
LED, respectively. The last command is used for reading the
current LED state.

Since you set the ESP32 in station mode, you need to connect the
ESP32 to an AP. Then, from another station e.g. your laptop/PC,
you need to make a connection request to the ESP32. In order to
make a connection request, you need to use a TCP client software
tool. I use a software tool named Hercules SETUP utility. It is a
freeware application that you can download from https://www.
hw-group.com/software/hercules-setup-utility.

From Hercules SETUP utility, you can send the command to control
the LED or read the current state of the LED. You need to end every
command with the newline character, which is defined as <LF> in this
tool. Figure 10.1 shows the logs of the TCP client.

CHAPTER 10. TCP SERVER 77

Figure 10.1. An example of TCP client using Hercules SETUP utility.

10.5 Summary

In this chapter, you have learned how to create a TCP server in the
ESP32. The server allows a connected TCP client to be able to control
the LED and read the current state of the LED. So, both the server
and client can send and receive data.

Chapter 11

TCP Client

What will you learn in this chapter?

� Concept of TCP client.

� Create a TCP client on an ESP32 station.

11.1 TCP Client

The previous chapter explained the concept of TCP/IP model. It
consists of four layers: network interface, internet, transport, and ap-
plication. In case of ESP32, the network interface layer corresponds
to the Wi-Fi PHY (baseband) and Wi-Fi MAC. They are implemented
as hardware on ESP32 chip. The internet and transport layers cor-
respond to the IP and TCP, respectively. They are implemented as
software libraries that run on the processor of ESP32. Most of the
time, we work on the transport layer (TCP) or the application layer.
We will get into the application layer in the next chapter. In the this
chapter, we are going to focus on the TCP client.

78

CHAPTER 11. TCP CLIENT 79

The TCP server creates a TCP socket with a specified port number and
waits for a connection request from the client. So, the client should
make a connection request to the server. Once the connection has
been accepted, both client or server can send and receive data. The
connection remains open until either the client or server terminates
the connection.

11.2 ESP32 TCP Client

In this chapter, we are going to focus on the TCP client. A TCP
client connects to a TCP server that listen on a specified IP address
and port number.

First of all, in order to use TCP client in ESP32 Arduino core, you
should include the WiFi.h library:

#include <WiFi.h>

In ESP32 Arduino Wi-Fi library, the TCP client class is named as WiFi
Client. There are two important methods for using TCP client in
ESP32: connect and stop. The connect method is defined as

int connect(IPAddress ip, uint16_t port);
int connect(IPAddress ip, uint16_t port,

int32_t timeout);

This method is used to connect the TCP client to a TCP server that
listens on a specified IP address and port number. This method has
two implementations with the same name, but the input arguments
are different. The ability to create multiple functions/methods of the
same name with different implementations is called function/method
overloading. The first implementation takes two input arguments: IP
address and port number of the server. The second implementation
takes three input arguments: IP address, port number, and timeout.
Once the client is connected to the server, these method return one.

CHAPTER 11. TCP CLIENT 80

The stop method is defined as

void stop();

which is used to terminate the connection to the server.

The ESP32 TCP client methods are defined in the ESP32 Arduino
library in the WiFiClient.h and WiFiClient.c.

11.3 Example Code: TCP Client

In this example code, you are going to create a TCP client that con-
nects to a TCP server. After the connection between the client and
server has been established, the client sends some data to the server.
In the server, you need to have a feature for echoing the received data.
So, the received data will be retransmitted back to the client. The
code is shown in Listing 11.1.

Listing 11.1. TCP client

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 1 Mar 2020
3

4 #include <WiFi.h>
5

6 const char ssid[] = "Huawei-E5573";
7 const char pass[] = "huaweie5573";
8

9 // *** TCP server IP and port ***
10 const char ip[] = "192.168.8.101";
11 const uint16_t port = 23;
12

13 void setup()
14 {
15 // Setup serial communication
16 Serial.begin(115200);
17

CHAPTER 11. TCP CLIENT 81

18 // *** Connect to a WiFi access point ***
19 Serial.printf("Connecting to %s ...\n", ssid);
20 WiFi.mode(WIFI_STA);
21 WiFi.begin(ssid, pass);
22 if (WiFi.waitForConnectResult() != WL_CONNECTED)
23 {
24 Serial.printf("WiFi connect failed! Rebooting ...\n");
25 delay(1000);
26 ESP.restart();
27 }
28 Serial.printf("Connected\n");
29 Serial.printf("IP address: %s\n", WiFi.localIP()
30 .toString().c_str());
31 }
32

33 void loop()
34 {
35 // TCP client object declaration
36 WiFiClient client;
37

38 // *** Connect to a TCP server ***
39 Serial.printf("Connecting to %s ...\n", ip);
40 if (!client.connect(ip, port))
41 {
42 Serial.printf("Connection failed\n");
43 Serial.println("Wait 5 sec ...");
44 delay(5000);
45 return;
46 }
47 Serial.printf("Connected\n");
48

49 // Send a message to the TCP server
50 client.printf("Message from TCP client\n");
51

52 // *** Read an echo from the TCP server ***
53 String response = client.readStringUntil(’\n’);
54 Serial.print("Echoed message: ");

CHAPTER 11. TCP CLIENT 82

55 Serial.println(response);
56

57 // *** Close TCP connection ***
58 Serial.printf("Closing connection\n");
59 client.stop();
60

61 Serial.println("Wait 5 sec ...");
62 delay(5000);
63 }

Here is the step-by-step to create a TCP client:

1. First, you need to define the IP address and port number of the
TCP server as in line 10 and 11.

2. Then, you need to set the ESP32 as a WiFi station that connects
to an AP as in line 19-30.

3. After that, you need to instantiate the WiFiClient class as
in line 36.

4. Next, in line 40-47, you need to connect the client to the server
by calling the connect method. If the connection request is
failed, then it will retry after 5 seconds.

5. Once the connection has been established, you can send a mes-
sage to server by calling printf method as in line 50.

6. Then, you need to wait for the echoed message from the server
by calling readStringUntil method as in line 53. The
echoed message will be printed to serial terminal.

7. Finally, in line 59, you need to call the stop method to termi-
nate the connection.

You need to connect your ESP32 to an AP. Then, from another station
e.g. your laptop/PC, you need to start a TCP server. As an example,

CHAPTER 11. TCP CLIENT 83

I use the Hercules SETUP utility to create a TCP server that listens
on port 23, and the server echo option is enabled as shown in Figure
11.1.

Figure 11.1. A TCP server using Hercules SETUP utility.

Figure 11.2. An example of client logs in serial terminal.

The client will connect to the server, and it will send a message. After

CHAPTER 11. TCP CLIENT 84

that, the message will be retransmitted back to the client. Finally, the
client terminates the connection. The client logs are printed to serial
terminal as shown in Figure 11.2.

11.4 Summary

In this chapter, you have learned how to create a TCP client in the
ESP32. The client connects to a TCP server. Both the client and
server can send and receive data as long as the connection is estab-
lished.

Chapter 12

HTTP Server

What will you learn in this chapter?

� Concept of HTTP server.

� Create a simple HTTP server on an ESP32 station.

12.1 HyperText Transfer Protocol

HyperText Transfer Protocol (HTTP) is a fundamental application
protocol for the world wide web (www). HyperText is a text displayed
on a computer display with hyperlinks or simply links to other resources
that the user can easily access by a mouse click or by tapping the screen
in a web browser. The HTTP communication takes place over a TCP
connection, which provides reliable transport service. The default TCP
port for HTTP is 80.

HTTP is based on requests and responses in a client-server model.
For example, a web browser may be the client, and an application
running on a computer hosting a website (web server) may be the

85

CHAPTER 12. HTTP SERVER 86

Figure 12.1. An example of a URL including all optional components. Retrieved
April 5, 2020, from wikipedia.org.

server. The client sends an HTTP request message to the server.
The server returns an HTTP response message to the client. The
response message may contain recources, such as HTML files and
other contents, or perform other functions on behalf of the client.

12.2 HTTP Server

An HTTP server is a piece of software that understands the HTTP and
Uniform Resource Locator (URL) or web address. It can be addressed
from the client (web browser) by using its URL. URL is a reference
to a resource that specifies its location on a computer network and a
mechanism for retrieving it. A example of a URL is shown in Figure
12.1.

This is an example of a typical URL: http://www.example.com/
index.html. It indicates a protocol (HTTP), a host name (www.
example.com), and a file name (index.html). In case of a server that
runs on a local network, most likely the URL could be like this: http:
//192.168.1.1/index.html. It uses its IP address as the host
name, because it doesn’t have a domain name1.

A block diagram of an HTTP server is shown in Figure 12.2. An
HTTP server and its resources are called web server. We will get
into the details of an embedded web server in the next part. A web
browser accesses the web server which is identified by its URL. The

1 A domain name is translated into its IP address by using a Domain Name Server
(DNS).

CHAPTER 12. HTTP SERVER 87

Figure 12.2. A block diagram of an HTTP server.

web browser sends HTTP request messages, and the server sends the
HTTP response messages. From the hardware point of view, servers
typically could be computer servers, PCs, or embedded devices. The
client typically could be PCs, tablets, smartphones, or embedded de-
vices. Sometimes, a device can be both client and server. When a
device requests data from a server, it acts as a client. When a device
provides data, it acts as a server.

12.3 Message Format

There are two types of HTTP messages: request which is sent by the
client and response which is sent by the server. Examples of HTTP
request and response messages are shown in Figure 12.3. HTTP re-
quests and responses are composed of:

� Start-line: for request message, the start-line describes HTTP
request method. For response message, the start-line describes
HTTP response status.

� HTTP headers: HTTP headers are optional. They provide
information about the request or response message, or about
the object sent in the body.

CHAPTER 12. HTTP SERVER 88

Figure 12.3. Example of HTTP messages. Retrieved April 5, 2020, from devel-
oper.mozilla.org.

� Empty line: the blank line indicates that all meta-information
of the message has been sent.

� Body: the body part is optional. It contains data associated
with the request, for example HTML files, images, or other files.
The HTTP headers specify the content of the body.

There are several commonly used HTTP methods: GET, POST, PUT,
and DELETE. They describe an action to be performed. There are
several commonly used status codes: 200 (OK), 303 (see other), 403
(forbidden), and 404 (not found).

12.4 ESP32 HTTP Server

In this chapter, we are going to use only the TCP server class, i.e.
the WiFiServer class of the ESP32 Arduino. The reason is that
the HTTP communication takes place over TCP. So, you only need a
TCP server runs on the ESP32, and you would be able to send and
receive HTTP messages. By not using any HTTP server or web server
library, you can understand how the HTTP request and response work.
We will use and get into the details of a web server library in the next
part.

CHAPTER 12. HTTP SERVER 89

12.5 Example Code: HTTP Server

In this example code, you are going to create a simple HTTP server
on top of a TCP server. A client (web browser) can connect to this
server. Then, it sends an HTTP request to the server to request a web
page. The request is printed to serial monitor. After that, the server
sends an HTTP response which contains a simple web page. Finally,
the web browser displays the web page. The code is shown in Listing
12.1.

Listing 12.1. HTTP server

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 1 Mar 2020
3

4 #include <WiFi.h>
5

6 const char ssid[] = "Huawei-E5573";
7 const char pass[] = "huaweie5573";
8

9 // TCP server port for HTTP
10 const uint16_t port = 80;
11

12 // TCP server object declaration
13 WiFiServer server(port);
14

15 String httpResponseHeader =
16 "HTTP/1.1 200 OK\r\n" \
17 "Content-Type: text/html\r\n" \
18 "Connection: close\r\n" \
19 "\r\n";
20 String webPage =
21 "<!DOCTYPE HTML>\r\n" \
22 "<html>\r\n" \
23 "<head>\r\n" \
24 "<title>ESP32 HTTP Server</title>\r\n" \
25 "</head>\r\n" \

CHAPTER 12. HTTP SERVER 90

26 "<body>\r\n" \
27 "<p>A web page from ESP32</p>\r\n" \
28 "</body>\r\n" \
29 "</html>\r\n";
30

31 void setup()
32 {
33 // Setup serial communication
34 Serial.begin(115200);
35

36 // *** Connect to a WiFi access point ***
37 Serial.printf("Connecting to %s ...\n", ssid);
38 WiFi.mode(WIFI_STA);
39 WiFi.begin(ssid, pass);
40 if (WiFi.waitForConnectResult() != WL_CONNECTED)
41 {
42 Serial.printf("WiFi connect failed! Rebooting ...\n");
43 delay(1000);
44 ESP.restart();
45 }
46 Serial.printf("Connected\n");
47 Serial.printf("IP address: %s\n", WiFi.localIP()
48 .toString().c_str());
49

50 // *** Start TCP server ***
51 server.begin();
52 Serial.printf("TCP server started at port %d\n", port);
53 }
54

55 void loop()
56 {
57 // Get TCP client
58 WiFiClient client = server.available();
59

60 // *** If a client connected ***
61 if (client)
62 {

CHAPTER 12. HTTP SERVER 91

63 Serial.printf("[Client connected]\n");
64

65 // An http request ends with a blank line
66 boolean currentLineIsBlank = true;
67 while (client.connected())
68 {
69 if (client.available())
70 {
71 // *** Read a character from client ***
72 char c = client.read();
73 Serial.write(c);
74

75 // The new line is a blank line
76 // The http request has ended
77 if (c == ’\n’ && currentLineIsBlank)
78 {
79 // Send HTTP response header
80 client.print(httpResponseHeader);
81 // Send web page
82 client.print(webPage);
83 Serial.printf("[HTTP response sent]\n");
84

85 break;
86 }
87

88 // Every line of HTTP request ends with \r\n
89 if (c == ’\n’)
90 {
91 // This is the last character of every line
92 currentLineIsBlank = true;
93 }
94 else if (c != ’\r’)
95 {
96 // The new line is not a blank line
97 currentLineIsBlank = false;
98 }
99 }

CHAPTER 12. HTTP SERVER 92

100 }
101 delay(1);
102

103 // *** Close client ***
104 client.stop();
105 Serial.printf("[Client disconnected]\n\n");
106 }
107 }

Here is the step-by-step to create a simple HTTP server:

1. First, you need to set the ESP32 in station mode as in line
37-48.

2. Then, you need to start the TCP server to listen to the port 80
as in line 51. The port number and server object are declared
in line 10 and 13, respectively.

3. After that, you need to accept a connection request from a client
as in line 58. If there is a client connected (line 61), then the
server will process it.

4. Next, you need to read every characters from receive buffer until
you reach the end of HTTP request message as in line 66-100.
It is indicated by a blank line. In this case, we assume that the
HTTP request from the web browser doesn’t have body data.

5. At the end of HTTP request, you need to send HTTP response
header and HTTP response body (web page) as in line 80 and
82, respectively. The HTTP response header is defined in line
15-19, while the web page is defined in line 20-29.

6. Then, in line 101, you need to add a delay to give time for the
web browser to receive the data.

7. Finally, in line 104, the server terminates the connection to the
client.

CHAPTER 12. HTTP SERVER 93

Figure 12.4. A web page from the HTTP server.

Figure 12.5. An example of HTTP server logs in serial terminal.

In order to test this example, you need to connect the ESP32 to an
AP. Then, from your laptop/PC, you need to open a web browser.
Type your ESP32’s IP address in the address bar. A web page will be
loaded as shown in Figure 12.4. This simple web page is written in
HTML. We will get into the details of HTML in the next part.

The HTTP server logs are shown in Figure 12.5. First, a client is
connected. Then, the client sends an HTTP request message. Note

CHAPTER 12. HTTP SERVER 94

that the HTTP request message is ended with a blank line. After that,
the server sends the HTTP response message. Finally, the connection
is terminated.

12.6 Summary

In this chapter, you have learned how to create a simple HTTP server
in the ESP32. A web browser can connect to the HTTP server. A
simple HTML web page is stored in the ESP32. Then, a web browser
loads and displays the web page.

Chapter 13

HTTP Client

What will you learn in this chapter?

� Concept of HTTP client.

� Create a simple HTTP client on a ESP32 station.

13.1 HTTP Client

The previous chapter explained the concept of HTTP server. A server
waits for a request message from a client. Once the client request
has been received, then the server processes it, and returns a response
message which contains a resource for the client. Any devices can act
as client, for example PCs, tablets, smartphones, embedded devices,
and even computer servers.

Suppose an embedded device provides weather information to a smart-
phone. In this scenario, the embedded device acts as a server. In
another scenario, an embedded device requests weather information
from an online server. So, in this scenario, the embedded device acts

95

CHAPTER 13. HTTP CLIENT 96

as a client.

13.2 ESP32 HTTP Client

As in the previous chapter, we are going to use only the TCP class,
which is the TCP client class. In ESP32 Arduino library, the TCP
client is called WiFiClient. Again, the reason is that the HTTP
communication takes place over TCP. So, you only need the a TCP
client runs on the ESP32, and you will be able to send and receive
HTTP messages.

13.3 Example Code: HTTP Client

In this example code, you are going to create a simple HTTP client on
top of a TCP client. The ESP32 that acts as an HTTP client connects
to an HTTP server, which is the google.com. Then, the client sends
an HTTP request to the server. After that, the server sends the HTTP
response which contains the Google home page. The code is shown
in Listing 13.1.

Listing 13.1. HTTP client

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 1 Mar 2020
3

4 #include <WiFi.h>
5

6 const char ssid[] = "Huawei-E5573";
7 const char pass[] = "huaweie5573";
8

9 const char host[] = "www.google.com";
10 const uint16_t port = 80;
11

12 String httpRequest =
13 "GET / HTTP/1.1\r\n" \

CHAPTER 13. HTTP CLIENT 97

14 "Host: " + String(host) + "\r\n" \
15 "Connection: close\r\n\r\n";
16

17 void setup()
18 {
19 // Setup serial communication
20 Serial.begin(115200);
21

22 // *** Connect to a WiFi access point ***
23 Serial.printf("Connecting to %s ...\n", ssid);
24 WiFi.mode(WIFI_STA);
25 WiFi.begin(ssid, pass);
26 if (WiFi.waitForConnectResult() != WL_CONNECTED)
27 {
28 Serial.printf("WiFi connect failed! Rebooting...\n");
29 delay(1000);
30 ESP.restart();
31 }
32 Serial.printf("Connected\n");
33 Serial.printf("IP address: %s\n", WiFi.localIP()
34 .toString().c_str());
35 }
36

37 void loop()
38 {
39 // TCP client object declaration
40 WiFiClient client;
41

42 // *** Connect to host server ***
43 Serial.printf("Connecting to %s ...\n", host);
44 if (!client.connect(host, port))
45 {
46 Serial.printf("Connection failed\n");
47 Serial.println("Wait 5 sec ...");
48 delay(5000);
49 return;
50 }

CHAPTER 13. HTTP CLIENT 98

51 Serial.printf("Connected\n");
52

53 // Send HTTP request
54 client.print(httpRequest);
55

56 // *** Wait until server give response ***
57 unsigned long timeout = millis();
58 while (client.available() == 0)
59 {
60 if (millis() - timeout > 5000)
61 {
62 Serial.printf("Client Timeout\n");
63 client.stop();
64 return;
65 }
66 }
67

68 // *** Read HTTP response from server ***
69 while(client.available())
70 {
71 String line = client.readStringUntil(’\n’);
72 Serial.print(line);
73 }
74

75 // *** Close TCP connection ***
76 Serial.printf("\nClosing connection\n");
77 client.stop();
78

79 Serial.println("Wait 5 sec ...");
80 delay(5000);
81 }

Here is the step-by-step to create a simple HTTP client:

1. First, you need to set the ESP32 in station mode as in line
23-34.

CHAPTER 13. HTTP CLIENT 99

2. Then, you need to create a TCP client object, and connect it
to the google.com as in line 40-51. The host name and port
number are declared in line 9 and 10, respectively.

3. After that, an HTTP request is defined in line 12-25, and it is
sent to the server as in line 54.

4. Next, you need to wait until the server sends the HTTP response
as in line 57-66.

5. Then, you need to read every characters from the HTTP re-
sponse as in line 68-73. The HTTP response is printed to
serial terminal.

6. Finally, you need to terminate the connection to the server as in
line 77.

Figure 13.1. An example of HTTP client logs in serial terminal.

In order to test this example, the ESP32 should be connected to an
AP that has an Internet access. Then, the client connects to the
google.com to request the home page. The server gives the response,
and it is printed in serial terminal. Finally, the client terminates the

CHAPTER 13. HTTP CLIENT 100

connection to the server. The HTTP client logs are shown in Figure
13.1

13.4 Summary

In this chapter, you have learned how to create a simple HTTP client
in the ESP32. The client can connect to google.com to request the
Google home page. Then, the web page is printed to serial terminal.

Part III

Embedded Web Development

101

Chapter 14

Web Server

What will you learn in this chapter?

� Concept of web server.

� Create a web server on an ESP32 station.

14.1 Web Server

In chapter 12, you have learned about the HTTP server. It was built
only with the TCP library. It can only receive simple HTTP requests
and send simple HTTP responses. In this chapter, you are going to
learn how to build a web server using a web server library. With a
web server library, you can focus with the content of your web page,
because the HTTP server functionality is already handled by the li-
brary. You just need to create your web pages, and then set handlers
to them.

102

CHAPTER 14. WEB SERVER 103

Figure 14.1. The concept of web template.

14.2 ESPAsyncWebServer Library

In this chapter, we are going to use a web server library called ES-
PAsyncWebServer [20]. This library uses asynchronous network, so
that you can handle more than one connection at the same time. It
runs on top of a base library called AsyncTCP [21]. The web server
does not run on the main loop. Instead, it uses handlers. A handler
is a routine that deals with an event. The routine would be executed
when the event occurs, i.e. the client request event. Inside a handler,
you can’t use yield or delay or any function that uses them. Further-
more, the server is smart enough to know when to close the connection
and free resources.

ESPAsyncWebServer has a simple template processing engine. A web
template helps you to create dynamic elements based on request pa-
rameters from a client. The concept of web template is show in Figure
14.1. The content and template are combined through the template
processing engine to produce the final HTML document. The ES-
PAsyncWebserver supports only replacing template placeholders with
actual values from variables. The practical use of web template will
be explained in more detail later.

CHAPTER 14. WEB SERVER 104

14.3 Example Code: Simple Web Server

In this example code, you are going to create a simple web server.
It accepts connection requests from web browsers (clients). Then, it
sends a simple HTML code that will display ’Hello, World!’. After
that, the web browser engines render the web page from the received
the HTML code. The code is shown in Listing 14.1.

Listing 14.1. Simple web server using ESPAsyncWebServer

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 7 Mar 2020
3

4 #include <WiFi.h>
5 #include <ESPAsyncWebServer.h>
6

7 const char ssid[] = "Huawei-E5573";
8 const char pass[] = "huaweie5573";
9

10 // TCP server port for HTTP
11 const uint16_t port = 80;
12

13 // Create AsyncWebServer object
14 AsyncWebServer server(port);
15

16 // Web page
17 const char webpage[] PROGMEM = R"=====(
18 <html>
19 <head>
20 <title>ESP32 Web Page</title>
21 </head>
22 <body>
23 <p>Hello, World!</p>
24 </body>
25 </html>
26)=====";
27

CHAPTER 14. WEB SERVER 105

28 void setup()
29 {
30 // Setup serial communication
31 Serial.begin(115200);
32

33 // *** Connect to a WiFi access point ***
34 Serial.printf("Connecting to %s ...\n", ssid);
35 WiFi.mode(WIFI_STA);
36 WiFi.begin(ssid, pass);
37 if (WiFi.waitForConnectResult() != WL_CONNECTED)
38 {
39 Serial.printf("WiFi connect failed! Rebooting ...\n");
40 delay(1000);
41 ESP.restart();
42 }
43 Serial.printf("Connected\n");
44 Serial.printf("IP address: %s\n", WiFi.localIP()
45 .toString().c_str());
46

47 // Handler for root request
48 server.on("/",
49 HTTP_GET, [](AsyncWebServerRequest *request)
50 {
51 request->send(200, "text/html", webpage);
52 });
53

54 // Start server
55 server.begin();
56 }
57

58 void loop()
59 {
60 }

CHAPTER 14. WEB SERVER 106

Here is the step-by-step to create a simple web server:

1. First, you need to set the ESP32 in station mode as in line
34-45.

2. Then, you need to instantiate the AsyncWebServer class as
an object named server as in line 14. It takes one input
argument—the default HTTP port number (80).

3. After that, you need to add a handler for the ’/’ (root) request
by calling on method as in line 48-52. The request is specified
as HTTP GET. When the event is occurred, it sends the HTML
code that is defined in webpage.

4. The webpage is defined in line 17-26. We use a variable mod-
ifier PROGMEM to store data in flash (program) memory instead
of SRAM. We define the HTML code as raw string literal. A raw
string literal starts with R"=====(and ends with)=====".
In raw string literal, the escape characters (like \n, \t, or \”)
of C++ are not processed, so you would get a single line of text
with a content identical with what you have in the source code.

5. Finally, in line 55, you need to start the web server by calling
begin method.

In order to test this example, you need to connect the ESP32 to an
AP. Then, from your laptop/PC, you need to open a web browser.
Type your ESP32’s IP address in the address bar. A web page will be
loaded as shown in Figure 14.2. This simple web page is written in
HTML. We will get into the details of HTML in the next chapter.

CHAPTER 14. WEB SERVER 107

Figure 14.2. A web page from the web server.

14.4 Summary

In this chapter, you have learned how to create a simple web server in
the ESP32. The result is same as in chapter 12, but we use the ES-
PAsyncWebServer library. So, we just need to define our web content
and leave the rest of HTTP processing to the library.

Chapter 15

HyperText Markup Language
(HTML)

What will you learn in this chapter?

� Concept of HyperText Markup Language (HTML).

� Create web pages for interfacing with hardware.

15.1 HyperText Markup Language (HTML)

HyperText Markup Language (HTML) is the standard programming
language for developing web pages. It defines the structure of web
pages. HTML usually works together with Cascading Style Sheets
(CSS) and JavaScript (JS) to create web pages. CSS defines the pre-
sentation/appearance of the web pages, and JS defines the behaviour
of the web pages. The HTML, CSS, and JS form the front-end design
of websites.

As you have seen in the previous chapter, web browsers receive HTML

108

CHAPTER 15. HYPERTEXT MARKUP LANGUAGE (HTML) 109

Figure 15.1. A simple HTML document.

documents from a web server or from a local storage. The web browser
engines render the HTML documents into web pages. HTML uses
various tags to format the content. The following is an example of a
simple HTML document from the previous chapter:

<html>
<head>
<title>ESP32 Web Page</title>

</head>
<body>
<p>Hello, World!</p>

</body>
</html>

A web browser renders this HTML to a web page as shown in Figure
15.1. This HTML code uses several basic tags:

� <html>: this tag encloses a complete HTML document.

CHAPTER 15. HYPERTEXT MARKUP LANGUAGE (HTML) 110

� <head>: this tag is a container for the head elements, such as
<title>, <meta>, <script>, etc.

� <title>: this tag defines the title of HTML document.

� <body>: this tag contains all the contents of HTML document,
such as <p>, <dir>, etc.

� <p>: this tag represents a paragraph.

Most of the tags have their corresponding closing tags. For example
<head> has its closing tag </head>.

15.2 Example Code: HTML for Controlling an
LED

In this example code, you are going to create a web page in HTML
for controlling an LED on the ESP32. In this chapter, you are going
to create only the HTML code. You will get into the web server and
its functionality in the next chapter.

Figure 15.2 shows the HTML web page. To control an LED, you can
use two buttons (on and off). The HTML code is shown in Listing
15.1.

Listing 15.1. HTML code for controlling an LED

1 <html>
2 <head>
3 <title>ESP32 Web Page</title>
4 </head>
5 <body>
6 <p>Write LED State</p>
7 <button>ON</button>
8 <button>OFF</button>
9 </body>

10 </html>

CHAPTER 15. HYPERTEXT MARKUP LANGUAGE (HTML) 111

Figure 15.2. A web page for controlling an LED.

This HTML code uses several tags:

1. First, in line 3, you need to define the title.

2. Then, in line 6, you need to define the description within <p>
tag.

3. After that, in line 7 and 8, you need to define the buttons (ON
and OFF) within <button> tag. The <button> tag creates
a button.

4. Finally, you need to put the button within <a> tag. The <a>
tag defines a hyperlink. Later, this hyperlink will be associated
with the LED functionality.

In this HTML code, we use hyperlinks to control the LED. When you
press the button, the web browser will send an HTTP GET request
to the URL that corresponds to the button. For example, if you
press the ON button, the web browser will send an HTTP GET to
192.168.8.102/on.

CHAPTER 15. HYPERTEXT MARKUP LANGUAGE (HTML) 112

15.3 Example Code: HTML for Dimming an LED

In this example code, you are going to create a web page in HTML for
dimming an LED on the ESP32 with PWM. The web page is similar
to the previous web page, but instead of using a button to send digital
control (on or off), you are going to use a slider to send the PWM
value.

Figure 15.3 shows the HTML web page. To dim an LED using a slider,
you can use an HTML input element of type range. The HTML code
is shown in Listing 15.2.

Listing 15.2. HTML code for dimming an LED

1 <html>
2 <head>
3 <title>ESP32 Web Page</title>
4 </head>
5 <body>
6 <p>Write LED Value</p>
7 <form action="/led_pwm" method="POST">
8 <input type="range" name="pwm_value"
9 min="0" max="1023" value="0">

10 <input type="submit">
11 </form>
12 </body>
13 </html>

This HTML code uses several tags:

1. First, in line 3, you need to define the title, and in line 6, you
need to define the description within <p> tag.

2. Then, in line 7-11, you need to define the slider and submit
button within the <form> tag. This tag has two attributes—ac
tion and method. The action attribute is the URL, and the
method attribute is the HTTP method.

CHAPTER 15. HYPERTEXT MARKUP LANGUAGE (HTML) 113

Figure 15.3. A web page for dimming an LED with PWM.

3. Next, in line 8 and 9, you need to define the slider. The range
of the PWM value is from 0 to 1023.

4. Finally, in line 10, you need to define a submit button. This is
another way to define a button instead of using <button> tag.

In this HTML code, instead of using HTTP GET, we use HTTP POST
to submit the PWM value.

15.4 Example Code: HTML for Reading a Physical
Button

In this example code, you are going to create a web page in HTML for
reading a physical button on the ESP32. You will use a <p> tag to
display the physical button state. Figure 15.4 shows the HTML web
page. The HTML code is shown in Listing 15.3.

Listing 15.3. HTML code for reading a physical button

1 <html>
2 <head>

CHAPTER 15. HYPERTEXT MARKUP LANGUAGE (HTML) 114

3 <title>ESP32 Web Page</title>
4 <meta http-equiv="refresh" content="3">
5 </head>
6 <body>
7 <p>Read Button State</p>
8 <p>%STATE%</p>
9 </body>

10 </html>

This HTML code uses several tags:

1. First, in line 3, you need to define the title, and in line 7, you
need to define the description within <p> tag.

2. Next, in line 4, you need to use meta tag. Within this tag,
you need to use http-equiv="refresh" attribute, and set
the content attribute to 3. This code is used to tell the web
browser to automatically refresh the web page every 3 seconds.
So, the new state of the switch would be updated.

3. Finally, in line 8, you need to define a placeholder for display-
ing the button state within the <p> and (bold text) tags.
Later, the web server replaces this placeholder the actual phys-
ical button state.

In this code, we set the HTML code to automatically refresh the web
page every 3 seconds. This is a very simple method to read a state or
value in the ESP32. In this method, the web browser flashes every 3
seconds, so it is quite annoying. In the next couple of tutorial, we are
going to improve this by using JavaScript. By using JavaScript, the
web browser can refresh only part of the web page that displays the
button state.

CHAPTER 15. HYPERTEXT MARKUP LANGUAGE (HTML) 115

Figure 15.4. A web page for reading a physical button.

15.5 Summary

To summarize, in this chapter you have created several HTML web
pages for interfacing with hardware components, such as LED or but-
ton. In the next chapter, you will host these web pages on the ESP32
web server and associate the HTML elements to the corresponding
hardware components.

Chapter 16

Web Page Data Exchange

What will you learn in this chapter?

� Create web servers for interfacing with hardware.

� HTTP GET and HTTP POST methods.

16.1 Web Page Data Exchange

In the previous chapter, we have learned how to create web pages in
HTML for interfacing with hardware, such as LED and button. In this
chapter, we are going to host the web pages on the ESP32 and asso-
ciate the HTML elements to the corresponding hardware components.
The web pages can interact with the hardware components through
the HTTP GET or HTTP POST method.

There are three examples in this chapter. First, we are going to control
the LED on and off. Second, we are going to dim the LED with PWM.
Third, we are going to read the physical button state.

116

CHAPTER 16. WEB PAGE DATA EXCHANGE 117

16.2 Example Code: Web Server for Controlling an
LED

In the first example code, you are going to create a web server for
controlling an LED. The code is shown in Listing 16.1. You are going
to use the HTML code that has been designed in the previous chapter.
It has two HTML buttons for turning on and off the LED. When a
user presses the HTML button, the web browser will send HTTP GET
to a specified URL, either to turn on or off the LED.

Listing 16.1. Web server for controlling an LED

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 7 Mar 2020
3

4 #include <WiFi.h>
5 #include <ESPAsyncWebServer.h>
6

7 // On-board LED’s GPIO pin
8 #define LED_ON_BOARD 2
9

10 const char ssid[] = "Huawei-E5573";
11 const char pass[] = "huaweie5573";
12

13 // TCP server port for HTTP
14 const uint16_t port = 80;
15

16 // Create AsyncWebServer object
17 AsyncWebServer server(port);
18

19 // Web page
20 const char webpage[] PROGMEM = R"=====(
21 <html>
22 <head>
23 <title>ESP32 Web Page</title>
24 </head>
25 <body>

CHAPTER 16. WEB PAGE DATA EXCHANGE 118

26 <p>Write LED State</p>
27 <button>ON</button>
28 <button>OFF</button>
29 </body>
30 </html>
31)=====";
32

33 void setup()
34 {
35 // Set GPIO pin as output for on-board LED
36 pinMode(LED_ON_BOARD, OUTPUT);
37 // Setup serial communication
38 Serial.begin(115200);
39

40 // *** Connect to a WiFi access point ***
41 Serial.printf("Connecting to %s ...\n", ssid);
42 WiFi.mode(WIFI_STA);
43 WiFi.begin(ssid, pass);
44 if (WiFi.waitForConnectResult() != WL_CONNECTED)
45 {
46 Serial.printf("WiFi connect failed! Rebooting ...\n");
47 delay(1000);
48 ESP.restart();
49 }
50 Serial.printf("Connected\n");
51 Serial.printf("IP address: %s\n", WiFi.localIP()
52 .toString().c_str());
53

54 // Handler for root request
55 server.on("/",
56 HTTP_GET, [](AsyncWebServerRequest *request)
57 {
58 request->send_P(200, "text/html", webpage);
59 });
60

61 // Handler for turning on the LED
62 server.on("/on",

CHAPTER 16. WEB PAGE DATA EXCHANGE 119

63 HTTP_GET, [](AsyncWebServerRequest *request){
64 printf("%s/on\n", WiFi.localIP().toString().c_str());
65 digitalWrite(LED_ON_BOARD, HIGH);
66 printf("LED On\n");
67 request->redirect("/");
68 });
69

70 // Handler for turning of the LED
71 server.on("/off",
72 HTTP_GET, [](AsyncWebServerRequest *request){
73 printf("%s/off\n", WiFi.localIP().toString().c_str());
74 digitalWrite(LED_ON_BOARD, LOW);
75 printf("LED Off\n");
76 request->redirect("/");
77 });
78

79 // Start server
80 server.begin();
81 }
82

83 void loop()
84 {
85 }

Here is the step-by-step to create a web server for controlling an LED:

1. First, you need to define the HTML code as in line 20-31.

2. Then, in line 36, you need to initialize the GPIO pin associated
with the on-board LED as output.

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 41-52.

4. Next, in line 55-59, you need to define a handler for the /
request. When there is a request from a web browser, the web
server will send the HTML code.

CHAPTER 16. WEB PAGE DATA EXCHANGE 120

Figure 16.1. A web server for controlling an LED.

5. Next, in line 62-68, you need to define a handler for /on re-
quest. When the ON button is pressed, this handler will be
executed. It will turn on the LED, and redirects back to the /.

6. Next, in line 71-77, you need to define a handler for /off
request. When the OFF button is pressed, this handler will be
executed. It will turn off the LED, and redirects back to the /.

7. Finally, in line 80, you need to start the web server.

Note that if you do not redirect the web page back to the / as in
line 67 and 76, you would see a blank page in the web browser.
This is because the /on and /off URLs don’t have any HTML code
associated with them. The result of this example code is illustrated in
Figure 16.1.

16.3 Example Code: Web Server for Dimming an
LED

In the second example code, you are going to create a web server for
dimming an LED with PWM. The code is shown in Listing 16.2. In

CHAPTER 16. WEB PAGE DATA EXCHANGE 121

the HTML code, it uses a slider and a button to submit the PWM
value to the web server. In this case, we use HTTP POST to send
the PWM value.

Listing 16.2. Web server for dimming an LED

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 7 Mar 2020
3

4 #include <WiFi.h>
5 #include <ESPAsyncWebServer.h>
6

7 // On-board LED’s GPIO pin
8 #define LED_ON_BOARD 2
9

10 // PWM parameters
11 const int channel = 0;
12 const int freq = 1000;
13 const int res = 10;
14

15 const char ssid[] = "Huawei-E5573";
16 const char pass[] = "huaweie5573";
17

18 // TCP server port for HTTP
19 const uint16_t port = 80;
20

21 // Create AsyncWebServer object
22 AsyncWebServer server(port);
23

24 // Web page
25 const char webpage[] PROGMEM = R"=====(
26 <html>
27 <head>
28 <title>ESP32 Web Page</title>
29 </head>
30 <body>
31 <p>Write LED Value</p>

CHAPTER 16. WEB PAGE DATA EXCHANGE 122

32 <form action="/led_pwm" method="POST">
33 <input type="range" name="pwm_value"
34 min="0" max="1023" value="0">

35 <input type="submit">
36 </form>
37 </body>
38 </html>
39)=====";
40

41 void setup()
42 {
43 // Set GPIO pin as output for on-board LED
44 pinMode(LED_ON_BOARD, OUTPUT);
45 // Configure PWM
46 ledcSetup(channel, freq, res);
47 // Attach the PWM channel to the LED
48 ledcAttachPin(LED_ON_BOARD, channel);
49

50 // Setup serial communication
51 Serial.begin(115200);
52

53 // *** Connect to a WiFi access point ***
54 Serial.printf("Connecting to %s ...\n", ssid);
55 WiFi.mode(WIFI_STA);
56 WiFi.begin(ssid, pass);
57 if (WiFi.waitForConnectResult() != WL_CONNECTED)
58 {
59 Serial.printf("WiFi connect failed! Rebooting ...\n");
60 delay(1000);
61 ESP.restart();
62 }
63 Serial.printf("Connected\n");
64 Serial.printf("IP address: %s\n", WiFi.localIP()
65 .toString().c_str());
66

67 // Handler for root request
68 server.on("/",

CHAPTER 16. WEB PAGE DATA EXCHANGE 123

69 HTTP_GET, [](AsyncWebServerRequest *request)
70 {
71 request->send_P(200, "text/html", webpage);
72 });
73

74 // Handler for button request
75 server.on("/led_pwm",
76 HTTP_POST, [](AsyncWebServerRequest *request)
77 {
78 // Get HTTP POST parameter
79 AsyncWebParameter *p = request->getParam(0);
80 if (p->isPost())
81 {
82 // Print HTTP POST parameter to the serial monitor
83 Serial.printf("POST[%s]: %s\n",
84 p->name().c_str(), p->value().c_str());
85 }
86 // Write PWM value to the LED
87 ledcWrite(channel, p->value().toInt());
88

89 request->redirect("/");
90 });
91

92 // Start server
93 server.begin();
94 }
95

96 void loop()
97 {
98 }

Here is the step-by-step to create a web server for dimming an LED:

1. First, you need to define the HTML code as in line 25-39.

2. Then, in line 44-48, you need to initialize the GPIO pin and the
PWM for the on-board LED.

CHAPTER 16. WEB PAGE DATA EXCHANGE 124

Figure 16.2. A web server for dimming an LED.

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 54-65.

4. Next, in line 68-72, you need to define a handler for the /
request.

5. Next, in line 75-90, you need to define a handler for /led pwm
request. It uses HTTP POST method. Within the handler, you
need to read the HTTP POST parameter by calling getParam
method as in line 79. You can print the name–value pair to the
serial monitor for debugging as in line 80-85. In line 87, set
the PWM value to the LED.

6. Finally, in line 93, you need to start the web server.

The result of this example code is illustrated in Figure 16.2. When
you press the submit button, the web browser sends an HTTP POST
to the web server. The PWM value is inserted as name–value pair of
the HTTP POST parameter.

CHAPTER 16. WEB PAGE DATA EXCHANGE 125

(a)

(b)

Figure 16.3. (a) HTTP GET name–pair in URL; (b) HTTP POST name–pair in
message body.

16.4 HTTP GET and POST Methods

There are two HTTP methods that can be used to send data to the
server—HTTP GET and HTTP POST. The main difference is that
GET carries request parameters appended in URL. While POST carries
request parameters in message body. POST is a more secure way of
transferring data from client to server in HTTP.

For the dimming LED example, you can also use GET to submit the
PWM value. If you use GET, the name–value pair is appended in
URL as shown in Figure 16.3(a). If you use POST, the name–value

CHAPTER 16. WEB PAGE DATA EXCHANGE 126

pair is appended in message body as shown in Figure 16.3(b). In GET
method, it is very easy to alter the data because it is appended in
URL. While in POST method, it is more secure because you can’t
easily alter the message body.

16.5 Example Code: Web Server for Reading a
Physical Button

In the third example code, you are going to create a web server for
reading a physical button. The code is shown in Listing 16.3. In the
HTML code, it uses a template placeholder to display the physical
button state. Whenever the web browser requests the web page, the
button state will be updated.

Listing 16.3. Web server for reading a physical button

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 7 Mar 2020
3

4 #include <WiFi.h>
5 #include <ESPAsyncWebServer.h>
6

7 // Button’s GPIO pin
8 #define BUTTON 12
9

10 const char ssid[] = "Huawei-E5573";
11 const char pass[] = "huaweie5573";
12

13 // TCP server port for HTTP
14 const uint16_t port = 80;
15

16 // Create AsyncWebServer object
17 AsyncWebServer server(port);
18

19 // Web page
20 const char webpage[] PROGMEM = R"=====(

CHAPTER 16. WEB PAGE DATA EXCHANGE 127

21 <html>
22 <head>
23 <title>ESP32 Web Page</title>
24 <meta http-equiv="refresh" content="3">
25 </head>
26 <body>
27 <p>Read Button State</p>
28 <p>%STATE%</p>
29 </body>
30 </html>
31)=====";
32

33 // Template processor for replacing placeholder
34 // with button state
35 String processor(const String& var)
36 {
37 String button_state;
38

39 if (var == "STATE")
40 {
41 // Read active-low button state
42 if (digitalRead(BUTTON))
43 {
44 button_state = "Released";
45 printf("Button released\n");
46 }
47 else
48 {
49 button_state = "Pressed";
50 printf("Button pressed\n");
51 }
52 return button_state;
53 }
54

55 return String();
56 }
57

CHAPTER 16. WEB PAGE DATA EXCHANGE 128

58 void setup()
59 {
60 // Set GPIO pin as input for button
61 pinMode(BUTTON, INPUT_PULLUP);
62 // Setup serial communication
63 Serial.begin(115200);
64

65 // *** Connect to a WiFi access point ***
66 Serial.printf("Connecting to %s ...\n", ssid);
67 WiFi.mode(WIFI_STA);
68 WiFi.begin(ssid, pass);
69 if (WiFi.waitForConnectResult() != WL_CONNECTED)
70 {
71 Serial.printf("WiFi connect failed! Rebooting ...\n");
72 delay(1000);
73 ESP.restart();
74 }
75 Serial.printf("Connected\n");
76 Serial.printf("IP address: %s\n", WiFi.localIP()
77 .toString().c_str());
78

79 // Handler for root request
80 server.on("/",
81 HTTP_GET, [](AsyncWebServerRequest *request)
82 {
83 request->send_P(200, "text/html", webpage, processor);
84 });
85

86 // Start server
87 server.begin();
88 }
89

90 void loop()
91 {
92 }

CHAPTER 16. WEB PAGE DATA EXCHANGE 129

Figure 16.4. A web server for reading a pyhsical button.

Here is the step-by-step to create a web server for reading a physical
button:

1. First, you need to define the HTML code as in line 20-31.

2. Then, in line 61, you need to initialize a GPIO pin as input for
a button.

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 66-77.

4. Next, in line 80-84, you need to define a handler for the /
request. When the server sends the web page, it calls a template
processor function named processor. This function is defined
in line 35-56. This function replaces the template placeholder
STATE to the actual button state.

5. Finally, in line 87, you need to start the web server.

The result of this example code is illustrated in Figure 16.4. The web
browser will automatically refresh the web page every 3 seconds. So,

CHAPTER 16. WEB PAGE DATA EXCHANGE 130

the button state is get updated. In the next chapter, we are going
to improve this by using JavaScript. So, the web browser can refresh
only part of the web page that displays the button state.

16.6 Summary

In this chapter, you have learned how to exchange data between client
and server using HTTP. There are two methods for requesting data
to server, which are HTTP GET and HTTP POST.

Chapter 17

JavaScript (JS)

What will you learn in this chapter?

� The concept of JavaScript for front-end.

� Bank-end data loading using JavaScript.

17.1 JavaScript

JavaScript is one of the three languages for front-end development. It
is used to define the behaviour of the web pages. JavaScript code is
executed by a JavaScript engine of the web browser. JavaScript can
manipulate web pages on the fly which makes web pages more dynamic
and interactive. It can also be used for back-end data loading while
you are doing other processing.

JavaScript can be implemented within the <script> tag in a web
page. Normally, the <script> tag can be placed within the <body>
tag or the <head> tag, depending on when you want the script to be
loaded. Here is an example of JavaScript code to display hello world

131

CHAPTER 17. JAVASCRIPT (JS) 132

on the web page:

<html>
<head>
<title>ESP32 Web Page</title>

</head>
<body>
<script>
document.write("Hello, World!");

</script>
</body>

</html>

JavaScript is a case-sensitive language. In JavaScript, the semicolon
character at the end of every line is optional. However, it is a good
programming practice to use semicolons.

In this chapter, we are going to use JavaScript to improve the web
pages in the previous chapter. There are three examples in this chap-
ter. First, we are going to dim the LED with PWM. This example is
similar to the previous one, but instead of HTML form, we are going
to use JavaScript to send the HTTP request. Second, we are going
to read the physical button state using JavaScript. This example is
also similar to the previous one, but we are going to update only the
part that displays the button state. Third, we are going to read the
DHT11 sensor using the same method as in the second example.

17.2 Example Code: Dimming an LED with JS

In the first example code, you are going to create a web server for
dimming an LED. The code is shown in Listing 17.1. We are go-
ing to use a technique called AJAX. AJAX stands for Asynchronous
JavaScript And XML. It is a technique for accessing a web server from
a web page. We are going to send the PWM value to the server using
HTTP POST with AJAX.

CHAPTER 17. JAVASCRIPT (JS) 133

Listing 17.1. Dimming an LED with JavaScript

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 7 Mar 2020
3

4 #include <WiFi.h>
5 #include <ESPAsyncWebServer.h>
6

7 // On-board LED’s GPIO pin
8 #define LED_ON_BOARD 2
9

10 // PWM parameters
11 const int channel = 0;
12 const int freq = 1000;
13 const int res = 10;
14

15 const char ssid[] = "Huawei-E5573";
16 const char pass[] = "huaweie5573";
17

18 // TCP server port for HTTP
19 const uint16_t port = 80;
20

21 // Create AsyncWebServer object
22 AsyncWebServer server(port);
23

24 // Web page
25 const char webpage[] PROGMEM = R"=====(
26 <html>
27 <head>
28 <title>ESP32 Web Page</title>
29 </head>
30 <body>
31 <p>Write LED Value using AJAX</p>
32 <input type="range" id="range_pwm"
33 min="0" max="1023" value="0">
34 <script>
35 document.getElementById("range_pwm")

CHAPTER 17. JAVASCRIPT (JS) 134

36 .oninput = function() {
37 var post_request = "pwm_value=" +
38 document.getElementById("range_pwm").value;
39 var xhttp = new XMLHttpRequest();
40 xhttp.open("POST", "led_pwm_ajax", true);
41 xhttp.send(post_request);
42 };
43 </script>
44 </body>
45 </html>
46)=====";
47

48 void setup()
49 {
50 // Set GPIO pin as output for on-board LED
51 pinMode(LED_ON_BOARD, OUTPUT);
52 // Configure PWM
53 ledcSetup(channel, freq, res);
54 // Attach the PWM channel to the LED
55 ledcAttachPin(LED_ON_BOARD, channel);
56

57 // Setup serial communication
58 Serial.begin(115200);
59

60 // *** Connect to a WiFi access point ***
61 Serial.printf("Connecting to %s ...\n", ssid);
62 WiFi.mode(WIFI_STA);
63 WiFi.begin(ssid, pass);
64 if (WiFi.waitForConnectResult() != WL_CONNECTED)
65 {
66 Serial.printf("WiFi connect failed! Rebooting ...\n");
67 delay(1000);
68 ESP.restart();
69 }
70 Serial.printf("Connected\n");
71 Serial.printf("IP address: %s\n", WiFi.localIP()
72 .toString().c_str());

CHAPTER 17. JAVASCRIPT (JS) 135

73

74 // Handler for root request
75 server.on("/",
76 HTTP_GET, [](AsyncWebServerRequest *request)
77 {
78 request->send_P(200, "text/html", webpage);
79 });
80

81 // Handler for button AJAX request
82 server.on("/led_pwm_ajax",
83 HTTP_POST, [](AsyncWebServerRequest *request)
84 {
85 // Get HTTP POST parameter
86 AsyncWebParameter *p = request->getParam(0);
87 if (p->isPost())
88 {
89 // Print HTTP POST parameter to the serial monitor
90 Serial.printf("POST[%s]: %s\n",
91 p->name().c_str(), p->value().c_str());
92 }
93 // Write PWM value to the LED
94 ledcWrite(channel, p->value().toInt());
95

96 // Tell client that the HTTP POST has been performed
97 request->send(303);
98 });
99

100 // Start server
101 server.begin();
102 }
103

104 void loop()
105 {
106 }

CHAPTER 17. JAVASCRIPT (JS) 136

Here is the step-by-step for dimming an LED with JavaScript:

1. First, you need to define the HTML code as in line 25-46.

2. Then, in line 51-55, you need to initialize the GPIO pin and the
PWM for the on-board LED.

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 61-72.

4. Next, in line 75-79, you need to define a handler for the /
request.

5. Next, in line 82-98, you need to define a handler for the HTTP
POST from AJAX request. Within the handler, you need to
read the HTTP POST parameter which is the PWM value, and
then you need to set the PWM value to the LED. After that, you
need to send HTTP 303 response as in line 97. This response
tells the client that the HTTP POST has been performed.

6. Finally, in line 101, you need to start the web server.

Here is the details on how the web page works. In this web page, we
only use a slider without a submit button as we do in the previous
chapter. The slider is defined as

<input type="range" id="range_pwm"
min="0" max="1023" value="0">

We should define the id attribute for this slider because we need to
access it from JavaScript code. The JavaScript code itself is defined
as

<script>
document.getElementById("range_pwm")

.oninput = function() {
var post_request = "pwm_value=" +

CHAPTER 17. JAVASCRIPT (JS) 137

document.getElementById("range_pwm").value;
var xhttp = new XMLHttpRequest();
xhttp.open("POST", "led_pwm_ajax", true);
xhttp.send(post_request);

};
</script>

In this JavaScript code, we set a handler for the range pwm slider.
The getElementById method returns the HTML element that has
a specified ID attribute. Then, we use oninput event, so when
the user move the slider, the code inside this handler is executed.
Inside the handler, we get the PWM value from the slider, then we
create an HTTP request parameter which is stored in a variable named
as post request. Next, we create an XMLHttpRequest object.
With this object, we can exchange data with the web server behind the
scenes. Then, we set the HTTP method to POST, and the URL to
led pwm ajax. Finally, we send the POST request by calling send
method.

The result of this example code is illustrated in Figure 17.1. When
you move the slider, the web browser sends the PWM value to the
web server. Then, the server sets the PWM value to the LED.

17.3 Example Code: Reading a Physical Button
with JS

In the second example code, you are going to create a web server
for reading a physical button. The code is shown in Listing 17.2.
We are going to use AJAX. With AJAX, we can update the web
page asynchronously by exchanging data with a web server behind the
scenes. We can update parts of the web page without reloading the
whole page.

CHAPTER 17. JAVASCRIPT (JS) 138

Figure 17.1. A web server for dimming an LED with AJAX.

Listing 17.2. Reading a pyhsical button with JavaScript

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 7 Mar 2020
3

4 #include <WiFi.h>
5 #include <ESPAsyncWebServer.h>
6

7 // Button’s GPIO pin
8 #define BUTTON 12
9

10 const char ssid[] = "Huawei-E5573";
11 const char pass[] = "huaweie5573";
12

13 // TCP server port for HTTP
14 const uint16_t port = 80;
15

16 // Create AsyncWebServer object
17 AsyncWebServer server(port);
18

19 // Web page
20 const char webpage[] PROGMEM = R"=====(

CHAPTER 17. JAVASCRIPT (JS) 139

21 <html>
22 <head>
23 <title>ESP32 Web Page</title>
24 </head>
25 <body>
26 <p>Read Button State using AJAX</p>
27 <p>N/A</p>
28 <script>
29 setInterval(function() {
30 getButtonState();
31 }, 1000);
32 function getButtonState() {
33 var xhttp = new XMLHttpRequest();
34 xhttp.onreadystatechange = function() {
35 if (this.readyState == 4 && this.status == 200) {
36 document.getElementById("button_state")
37 .innerHTML = this.responseText;
38 }
39 };
40 xhttp.open("GET", "button_ajax", true);
41 xhttp.send();
42 }
43 </script>
44 </body>
45 </html>
46)=====";
47

48 void setup()
49 {
50 // Set GPIO pin as input for button
51 pinMode(BUTTON, INPUT_PULLUP);
52 // Setup serial communication
53 Serial.begin(115200);
54

55 // *** Connect to a WiFi access point ***
56 Serial.printf("Connecting to %s ...\n", ssid);
57 WiFi.mode(WIFI_STA);

CHAPTER 17. JAVASCRIPT (JS) 140

58 WiFi.begin(ssid, pass);
59 if (WiFi.waitForConnectResult() != WL_CONNECTED)
60 {
61 Serial.printf("WiFi connect failed! Rebooting ...\n");
62 delay(1000);
63 ESP.restart();
64 }
65 Serial.printf("Connected\n");
66 Serial.printf("IP address: %s\n", WiFi.localIP()
67 .toString().c_str());
68

69 // Handler for root request
70 server.on("/",
71 HTTP_GET, [](AsyncWebServerRequest *request)
72 {
73 request->send_P(200, "text/html", webpage);
74 });
75

76 // Handler for button AJAX request
77 server.on("/button_ajax",
78 HTTP_GET, [](AsyncWebServerRequest *request)
79 {
80 if (digitalRead(BUTTON))
81 {
82 request->send(200, "text/plain", "Released");
83 printf("Button released\n");
84 }
85 else
86 {
87 request->send(200, "text/plain", "Pressed");
88 printf("Button pressed\n");
89 }
90 });
91

92 // Start server
93 server.begin();
94 }

CHAPTER 17. JAVASCRIPT (JS) 141

95

96 void loop()
97 {
98 }

Here is the step-by-step to create a web server for reading a physical
button with JavaScript:

1. First, you need to define the HTML code as in line 20-46.

2. Then, in line 51, you need to initialize a GPIO pin as input for
a button.

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 56-67.

4. Next, in line 70-74, you need to define a handler for the /
request.

5. Next, in line 77-90, you need to define a handler for the HTTP
GET from AJAX request. Within the handler, you need to read
the button state, and then send the state as plain text to the
client.

6. Finally, in line 93, you need to start the web server.

Note that in this example, we don’t use template placeholder as we
do in the previous chapter. Instead, the JavaScript code will update
the button state. Here is the details on how the web page works. The
button state is defined within <p> tag as

<p>N/A</p>

We use tag to mark up a part of a text. When it is marked, we
can style it with CSS, or manipulate it with JavaScript. The JavaScript
code is defined as

CHAPTER 17. JAVASCRIPT (JS) 142

<script>
setInterval(function() {

getButtonState();
}, 1000);
function getButtonState() {

var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
document.getElementById("button_state")

.innerHTML = this.responseText;
}

};
xhttp.open("GET", "button_ajax", true);
xhttp.send();

}
</script>

We call setInterval method to execute the getButtonState
function every one second. Within the getButtonState function,
we create an XMLHttpRequest object. Then, we define a han-
dler (with onreadystatechange method) to process the HTTP
response from the server. The handler will update the button state.
Finally, we set the HTTP method to GET, the URL to button ajax,
and then send it to the server.

When you run this example, you will get the same web page as in the
previous chapter, but the web page will not be automatically reloaded
every second. This is because we can exchange the button state data
behind the scenes, and we reload only the text within the
tag.

CHAPTER 17. JAVASCRIPT (JS) 143

17.4 Example Code: Reading the DHT11 Sensor
with JS

In the third example code, you are going to create a web server for
reading the DHT11 sensor. The code is shown in Listing 17.3. We are
going to use AJAX to send HTTP request to the server. Then, the
server will send the response which is the temperature and humidity
values. The temperature and humidity values are formatted in JSON.

Listing 17.3. Reading the DHT11 sensor with JavaScript

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 7 Mar 2020
3

4 #include <WiFi.h>
5 #include <ESPAsyncWebServer.h>
6 #include <DHT.h>
7 #include <ArduinoJson.h>
8

9 #define DHTPIN 22
10 #define DHTTYPE DHT11
11

12 // Setup DHT pin and type
13 DHT dht(DHTPIN, DHTTYPE);
14

15 const char ssid[] = "Huawei-E5573";
16 const char pass[] = "huaweie5573";
17

18 // TCP server port for HTTP
19 const uint16_t port = 80;
20

21 // Create AsyncWebServer object
22 AsyncWebServer server(port);
23

24 // Web page
25 const char webpage[] PROGMEM = R"=====(
26 <html>

CHAPTER 17. JAVASCRIPT (JS) 144

27 <head>
28 <title>ESP32 Web Page</title>
29 </head>
30 <body>
31 <p>Read DHT11 Sensor using AJAX</p>
32 <p>Temperature:
33 N/A°C</p>
34 <p>Humidity:
35 N/A%</p>
36 <script>
37 setInterval(function() {
38 getDHT11Value();
39 }, 1000);
40 function getDHT11Value() {
41 var xhttp = new XMLHttpRequest();
42 xhttp.onreadystatechange = function() {
43 if (this.readyState == 4 && this.status == 200) {
44 var response = JSON.parse(this.responseText);
45 document.getElementById("temp_value")
46 .innerHTML = Math.round(response.temp);
47 document.getElementById("hum_value")
48 .innerHTML = Math.round(response.hum);
49 }
50 };
51 xhttp.open("POST", "dht11_ajax", true);
52 xhttp.send();
53 }
54 </script>
55 </body>
56 </html>
57)=====";
58

59 void setup()
60 {
61 // Setup serial communication
62 Serial.begin(115200);
63 // Initialize DHT sensor

CHAPTER 17. JAVASCRIPT (JS) 145

64 dht.begin();
65

66 // *** Connect to a WiFi access point ***
67 Serial.printf("Connecting to %s ...\n", ssid);
68 WiFi.mode(WIFI_STA);
69 WiFi.begin(ssid, pass);
70 if (WiFi.waitForConnectResult() != WL_CONNECTED)
71 {
72 Serial.printf("WiFi connect failed! Rebooting ...\n");
73 delay(1000);
74 ESP.restart();
75 }
76 Serial.printf("Connected\n");
77 Serial.printf("IP address: %s\n", WiFi.localIP()
78 .toString().c_str());
79

80 // Handler for root request
81 server.on("/",
82 HTTP_GET, [](AsyncWebServerRequest *request)
83 {
84 request->send_P(200, "text/html", webpage);
85 });
86

87 // Handler for DHT11 AJAX request
88 server.on("/dht11_ajax",
89 HTTP_POST, [](AsyncWebServerRequest *request)
90 {
91 // Read temperature and humidity
92 float temp = dht.readTemperature();
93 float hum = dht.readHumidity();
94 printf("Temperature: %.2f, Humidity: %.2f\n",
95 temp, hum);
96

97 // Send JSON response
98 AsyncResponseStream *response =
99 request->beginResponseStream("application/json");

100 DynamicJsonBuffer jsonBuffer;

CHAPTER 17. JAVASCRIPT (JS) 146

101 JsonObject &dht11 = jsonBuffer.createObject();
102 dht11["temp"] = String(temp);
103 dht11["hum"] = String(hum);
104 dht11.printTo(*response);
105 request->send(response);
106 });
107

108 // Start server
109 server.begin();
110 }
111

112 void loop()
113 {
114 }

Here is the step-by-step to create a web server for reading the DHT11
sensor with JavaScript:

1. First, you need to define the HTML code as in line 25-57.

2. Then, in line 64, you need to initialize the DHT11.

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 67-78.

4. Next, in line 81-85, you need to define a handler for the /
request.

5. Next, in line 88-106, you need to define a handler for the HTTP
POST from AJAX request. Within the handler, you need to read
the temperature and humidity (line 92 and 93), and then send
the them in JSON format to the client (line 98-105).

6. Finally, in line 109, you need to start the web server.

Here is the details on how the web page works. The temperature and
humidity value are defined within <p> tag as

CHAPTER 17. JAVASCRIPT (JS) 147

<p>Temperature:
N/A°C</p>

<p>Humidity:
N/A%</p>

We use tags to mark up the text for temperature and humid-
ity. We are going to update them from the JavaScript. The JavaScript
code is defined as

<script>
setInterval(function() {

getDHT11Value();
}, 1000);
function getDHT11Value() {

var xhttp = new XMLHttpRequest();
xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {
var response = JSON.parse(this.responseText);
document.getElementById("temp_value")

.innerHTML = Math.round(response.temp);
document.getElementById("hum_value")

.innerHTML = Math.round(response.hum);
}

};
xhttp.open("POST", "dht11_ajax", true);
xhttp.send();

}
</script>

We call setInterval method to execute the getDHT11Value
function every one second. Within the getDHT11Value function,
we create an XMLHttpRequest object. Then, we define a handler to
process the HTTP response from the server. The handler will update
the temperature and humidity value to the text that are marked up
with tags. Finally, we set the HTTP method to POST, the
URL to dht11 ajax, and then send it to the server.

CHAPTER 17. JAVASCRIPT (JS) 148

We use JSON to format the temperature and humidity value. JSON
stands for JavaScript Object Notation. It is a lightweight data in-
terchange format. It is easy for humans to read and understand the
JSON format. The JSON format for this example is defined as

{"temp":"29.00","hum":"88.00"}

JSON objects are written in key/value pairs. A Key and value are
separated by a colon, and each key/value pair is separated by a comma.
To create and parse JSON in Arduino, you can use ArduinoJson [22]
library.

17.5 Wrapping Up: AJAX Technique

In AJAX, HTML elements are associated with JavaScript event han-
dlers. When an event is occurred (e.g. the page is loaded, a button
is clicked), an XMLHttpRequest object is created by JavaScript.
After that, the object sends an HTTP request to a web server. Next,
the server processes the request, and sends a response back to the
web page. Finally, the response is read and a proper action (like page
update) is performed by JavaScript.

17.6 Summary

In this chapter, you have learned how to exchange data between client
and server using AJAX technique. With AJAX, you can exchange data
between client and server behind the scenes. You can also update parts
of the web page without reloading the whole page.

Chapter 18

SPI Flash File System

What will you learn in this chapter?

� Separating front-end code from back-end code.

� Store web files in SPI flash file system.

18.1 SPI Flash File System

So far, we have always included the front-end code (HTML and JS)
in our Arduino code as raw string literals. However, the problem is
as soon as your project gets bigger this becomes hard to maintain.
SPI Flash File System (SPIFFS) is a light-weight file system for mi-
crocontrollers with an SPI flash chip. With SPIFFS, you can store the
front-end code as files as if it was in your computer. Therefore, you
don’t need to define them as raw string literals.

The ESP32 chip has 4-16 MB of SPI flash memory depending on the
version. So, it has plenty of space for storing your web pages. To
use the SPIFFS, you just need to include the library, and then you

149

CHAPTER 18. SPI FLASH FILE SYSTEM 150

Figure 18.1. ESP32 flash memory partition scheme.

can upload the files to the SPIFFS from the Arduino IDE by using
Arduino ESP32 file system uploader [23]. To install the plugin, you
should follow the instructions there. You can also change the partition
scheme of the SPIFFS. Figure 18.1 shows ESP32 flash memory parti-
tion scheme. The flash memory is divided into two partitions, which
are for application (APP) and data (SPIFFS).

18.2 Example Code: Web Server using SPIFFS

In this example code, you are going to create a web server that stores
its web pages in the SPIFFS. The code is shown in Listing 18.1. We
are going to create a simple web page in an HTML file named as in
dex.html. We are going to upload this file into the SPIFFS. Then,
when the web browser requests the file, web server reads the file from
SPIFFS and sends it to the web browser.

Listing 18.1. Web server using SPIFFS

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 8 Mar 2020
3

4 #include <SPIFFS.h>
5 #include <WiFi.h>
6 #include <ESPAsyncWebServer.h>

CHAPTER 18. SPI FLASH FILE SYSTEM 151

7

8 const char ssid[] = "Huawei-E5573";
9 const char pass[] = "huaweie5573";

10

11 // TCP server port for HTTP
12 const uint16_t port = 80;
13

14 // Create AsyncWebServer object
15 AsyncWebServer server(port);
16

17 void setup()
18 {
19 // Setup serial communication
20 Serial.begin(115200);
21

22 // Initialize SPIFFS
23 if (!SPIFFS.begin(true))
24 {
25 Serial.println("An error has occurred while \
26 mounting SPIFFS");
27 return;
28 }
29

30 // *** Connect to a WiFi access point ***
31 Serial.printf("Connecting to %s ...\n", ssid);
32 WiFi.mode(WIFI_STA);
33 WiFi.begin(ssid, pass);
34 if (WiFi.waitForConnectResult() != WL_CONNECTED)
35 {
36 Serial.printf("WiFi connect failed! Rebooting ...\n");
37 delay(1000);
38 ESP.restart();
39 }
40 Serial.printf("Connected\n");
41 Serial.printf("IP address: %s\n", WiFi.localIP()
42 .toString().c_str());
43

CHAPTER 18. SPI FLASH FILE SYSTEM 152

44 // Handler for root request
45 server.on("/",
46 HTTP_GET, [](AsyncWebServerRequest *request)
47 {
48 request->send(SPIFFS, "/index.html");
49 });
50

51 // Start server
52 server.begin();
53 }
54

55 void loop()
56 {
57 }

Here is the step-by-step to create a web server using SPIFFS:

1. First, you need to include the SPIFFS library as in line 4.

2. Then, you need to initialize the SPIFFS as in line 22-28.

3. After that, in line 45-49, you need to set a handler for the /
request. Note that in the send function, in line 48, we call the
index.html that is stored in the SPIFFS.

4. Finally, in line 52, you need to start the web server.

In order to upload the index.html into the SPIFFS, you need to put
the file within a folder named as ’Data’. As an example, Figure 18.2
shows the folder structure of this project. To upload the files inside
the ’Data’ folder, you can go to menu Tools → ESP32 Sketch Data
Upload.

CHAPTER 18. SPI FLASH FILE SYSTEM 153

Figure 18.2. Folder structure of the project.

18.3 Summary

In this chapter, you have learned how to create a web server using
SPIFFS. By using this technique, you can separate the front-end code
(HTML, CSS, and JS) from the back-end code (C/C++). The front-
end code can be stored as files as if it was in your computer.

Chapter 19

Cascading Style Sheets (CSS)

What will you learn in this chapter?

� The concept of Cascading Style Sheets (CSS) for front-end.

� Style web pages using Bootstrap (a CSS library).

19.1 Cascading Style Sheets

So far, we have learn about HTML and JavaScript. The last language
of the three languages for front-end development is Cascading Style
Sheets (CSS). With only HTML and JavaScript, we can create fully
functional web pages, but it is like build a house without any colors
and design. CSS is used to describe the style of an HTML document.
So, we can make our web pages more attractive.

There are three ways to add CSS to the HTML elements:

� Inline: the CSS is written in the style attribute of an HTML
element that you want to apply that style to.

154

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 155

� Internal: the CSS is written in the <style> tag in the <head>
section.

� External: the CSS is written in a separate .css file.

For a small and simple project, I would recommend you to write the
CSS in the <style> tag. But, for a big and complex project, I would
recommend you to write the CSS in a separate CSS file. Here is an
example of CSS code to change the color of a text using inline CSS:

<html>
<head>
<title>ESP32 Web Page</title>

</head>
<body>
<p style="color: blue;">This is a blue text.</p>

</body>
</html>

You can do the same thing using internal CSS as follows:

<html>
<head>
<title>ESP32 Web Page</title>
<style>
p {color: blue;}

</style>
</head>
<body>
<p>This is a blue text.</p>

</body>
</html>

To use an external CSS file, you need to add a link to it in the <head>
section:

<html>
<head>

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 156

Figure 19.1. CSS syntax. Retrieved June 1, 2020, from w3schools.com.

<title>ESP32 Web Page</title>
<link rel="stylesheet" href="style.css">

</head>
<body>
<p>This is a blue text.</p>

</body>
</html>

Here is how the ’style.css’ looks:

p {
color: blue;

}

The CSS syntax is shown in Figure 19.1. The selector points to the
HTML element that you want to style. Within the curly brackets,
you can put declarations of styles separated with semicolons. Each
declaration has a name–value pair separated by a colon.

In this book, we are going to use a CSS library called Bootstrap to
style the previous web pages. The entire CSS syntax and rules are
beyond the scope of this book. You can refer to this tutorial [24]
instead.

19.2 Bootstrap

Bootstrap is a free and open-source CSS library. It helps you design
websites faster and easier. It helps you create responsive designs1.

1 Responsive web design is an approach to design websites that automatically
adjust themselves for a variety of devices and screen sizes.

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 157

Bootstrap is originally created by developers at Twitter, and then it is
released as an open source product in 2011.

There are two ways to use Bootstrap in your websites. First, you can
download Bootstrap from getbootstrap.com, and follow the instruc-
tions there. Then, you can add links to them in the <head> section
as shown in the following codes. It is assumed that you put the files
in the same directory as the HTML file.

<head>
<title>ESP32 Web Page</title>
<link rel="stylesheet" href="bootstrap.min.css">
<script src="jquery-3.3.1.min.js"></script>
<script src="popper.min.js"></script>
<script src="bootstrap.min.js"></script>

</head>

The second way to import Bootstrap is by using content delivery net-
work (CDN). CDN is a group of geographically distributed servers
which provide fast delivery of Internet content. With CDN, you don’t
need to download Bootstrap to your computer and then store it in
ESP32, but your ESP32 needs to be connected to the Internet. In
order to use CDN, you just need to add the CDN links as shown in
the following code.

<head>
<title>ESP32 Web Page</title>
<link rel="stylesheet" href="https://stackpath

.bootstrapcdn.com/bootstrap/4.3.1/css
/bootstrap.min.css">

<script src="https://code.jquery.com
/jquery-3.3.1.min.js"></script>

<script src="https://cdnjs.cloudflare.com
/ajax/libs/popper.js/1.14.7/umd
/popper.min.js"></script>

<script src="https://stackpath.bootstrapcdn.com
/bootstrap/4.3.1/js

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 158

/bootstrap.min.js"></script>
</head>

There are three examples in this chapter. First, we are going to style
a text using Bootstrap label. Second, we are going to style a button
using Bootstrap button. Third, we are going to create a container for
other HTML elements using Bootstrap card.

Figure 19.2. Using Bootstrap badge class to style a text.

19.3 Example Code: Bootstrap Label

In the first example code, you are going to style a text using Bootstrap
badge class. The text displays a physical button state that is connected
to the ESP32. The result is shown in Figure 19.2. The C code for this
example is shown in Listing 19.1.

Listing 19.1. C code for styling a text using Bootstrap badge class

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 8 Mar 2020
3

4 #include <SPIFFS.h>
5 #include <WiFi.h>

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 159

6 #include <ESPAsyncWebServer.h>
7

8 // Button’s GPIO pin
9 #define BUTTON 12

10

11 const char ssid[] = "Huawei-E5573";
12 const char pass[] = "huaweie5573";
13

14 // TCP server port for HTTP
15 const uint16_t port = 80;
16

17 // Create AsyncWebServer object
18 AsyncWebServer server(port);
19

20 void setup()
21 {
22 // Set GPIO pin as input for button
23 pinMode(BUTTON, INPUT_PULLUP);
24 // Setup serial communication
25 Serial.begin(115200);
26

27 // Initialize SPIFFS
28 if (!SPIFFS.begin(true))
29 {
30 Serial.println("An error has occurred while \
31 mounting SPIFFS");
32 return;
33 }
34

35 // *** Connect to a WiFi access point ***
36 Serial.printf("Connecting to %s ...\n", ssid);
37 WiFi.mode(WIFI_STA);
38 WiFi.begin(ssid, pass);
39 if (WiFi.waitForConnectResult() != WL_CONNECTED)
40 {
41 Serial.printf("WiFi connect failed! Rebooting ...\n");
42 delay(1000);

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 160

43 ESP.restart();
44 }
45 Serial.printf("Connected\n");
46 Serial.printf("IP address: %s\n", WiFi.localIP()
47 .toString().c_str());
48

49 // Handler for root request
50 server.on("/",
51 HTTP_GET, [](AsyncWebServerRequest *request)
52 {
53 request->send(SPIFFS, "/index.html");
54 });
55

56 // Handler for button AJAX request
57 server.on("/button_ajax",
58 HTTP_GET, [](AsyncWebServerRequest *request)
59 {
60 if (digitalRead(BUTTON))
61 {
62 request->send(200, "text/plain", "OFF");
63 }
64 else
65 {
66 request->send(200, "text/plain", "ON");
67 }
68 });
69

70 // Handler for Bootstrap libraries
71 server.on("/bootstrap.min.css",
72 HTTP_GET, [](AsyncWebServerRequest *request) {
73 request->send(SPIFFS, "/bootstrap.min.css");
74 });
75 server.on("/jquery-3.3.1.min.js",
76 HTTP_GET, [](AsyncWebServerRequest *request) {
77 request->send(SPIFFS, "/jquery-3.3.1.min.js");
78 });
79 server.on("/popper.min.js",

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 161

80 HTTP_GET, [](AsyncWebServerRequest *request) {
81 request->send(SPIFFS, "/popper.min.js");
82 });
83 server.on("/bootstrap.min.js",
84 HTTP_GET, [](AsyncWebServerRequest *request) {
85 request->send(SPIFFS, "/bootstrap.min.js");
86 });
87

88 // Start server
89 server.begin();
90 }
91

92 void loop()
93 {
94 }

Here is the step-by-step how to create the web server:

1. First, in line 23, you need to initialize a GPIO pin as input for
a button.

2. Then, you need to initialize the SPIFFS as in line 28-33.

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 36-47.

4. Next, in line 50-54, you need to define a handler for the /
request.

5. Next, in line 57-68, you need to define a handler for the HTTP
GET from AJAX request. Within the handler, you need to read
the button state, and then send the state as plain text to the
client.

6. Next, in line 71-86, you need to define handlers for Bootstrap
library files.

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 162

7. Finally, in line 89, you need to start the web server.

Subsequently, you need to create the HTML code in a separate file
named as index.html as shown in Listing 19.2. You need to put this
file together with the Bootstrap library files inside the ’Data’ folder.

Listing 19.2. HTML code for styling a text using Bootstrap badge class

1 <html>
2 <head>
3 <title>ESP32 Web Page</title>
4 <link rel="stylesheet" href="bootstrap.min.css">
5 <script src="jquery-3.3.1.min.js"></script>
6 <script src="popper.min.js"></script>
7 <script src="bootstrap.min.js"></script>
8 </head>
9 <body>

10 <div class="container-fluid">
11 <h3 class="text-center">
12 Read Button State using AJAX
13 </h3>
14 <h3 class="text-center">
15
16 <span id="button_state"
17 class="badge badge-warning">
18 N/A
19
20 </h3>
21 <div>
22 <script>
23 setInterval(function() {
24 getButtonState();
25 }, 1000);
26 function getButtonState() {
27 var xhttp = new XMLHttpRequest();
28 xhttp.onreadystatechange = function() {
29 if (this.readyState == 4

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 163

Figure 19.3. Bootstrap containers.

30 && this.status == 200) {
31 document.getElementById("button_state")
32 .innerHTML = this.responseText;
33 }
34 };
35 xhttp.open("GET", "button_ajax", true);
36 xhttp.send();
37 }
38 </script>
39 </body>
40 </html>

Here we use four Bootstrap classes:

� .container-fluid: in line 10, we use this class to pro-
vide a full width container that span the entire width of the
viewport. Instead of .container-fluid, you can also use
.container. The difference is illustrated in Figure 19.3.

� .text-center: in line 11 and 14, we use this class to center
text horizontally.

� .badge and .badge-warning: in line 17, we use this class
to provide background color to the text. You can choose other
colors as shown in Figure 19.4.

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 164

Figure 19.4. Bootstrap badge variations [25].

19.4 Example Code: Bootstrap Button

In the second example code, you are going to style HTML buttons us-
ing Bootstrap button class. We are going to style two HTML buttons
for turning on and off an LED on the ESP32. The result is shown in
Figure 19.5. We also center the content of web page both horizontally
and vertically. The C code for this example is shown in Listing 19.3.

Listing 19.3. C code for styling HTML buttons using Bootstrap button class

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 8 Mar 2020
3

4 #include <SPIFFS.h>
5 #include <WiFi.h>
6 #include <ESPAsyncWebServer.h>
7

8 // On-board LED’s GPIO pin
9 #define LED_ON_BOARD 2

10

11 const char ssid[] = "Huawei-E5573";
12 const char pass[] = "huaweie5573";
13

14 // TCP server port for HTTP
15 const uint16_t port = 80;
16

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 165

17 // Create AsyncWebServer object
18 AsyncWebServer server(port);
19

20 void setup()
21 {
22 // Set GPIO pin as output for on-board LED
23 pinMode(LED_ON_BOARD, OUTPUT);
24 // Setup serial communication
25 Serial.begin(115200);
26

27 // Initialize SPIFFS
28 if (!SPIFFS.begin(true))
29 {
30 Serial.println("An error has occurred while \
31 mounting SPIFFS");
32 return;
33 }
34

35 // *** Connect to a WiFi access point ***
36 Serial.printf("Connecting to %s ...\n", ssid);
37 WiFi.mode(WIFI_STA);
38 WiFi.begin(ssid, pass);
39 if (WiFi.waitForConnectResult() != WL_CONNECTED)
40 {
41 Serial.printf("WiFi connect failed! Rebooting ...\n");
42 delay(1000);
43 ESP.restart();
44 }
45 Serial.printf("Connected\n");
46 Serial.printf("IP address: %s\n", WiFi.localIP()
47 .toString().c_str());
48

49 // Handler for root request
50 server.on("/",
51 HTTP_GET, [](AsyncWebServerRequest *request)
52 {
53 request->send(SPIFFS, "/index.html");

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 166

54 });
55

56 // Handler for turning on the LED
57 server.on("/on",
58 HTTP_POST, [](AsyncWebServerRequest *request){
59 digitalWrite(LED_ON_BOARD, HIGH);
60 request->send(303);
61 });
62

63 // Handler for turning of the LED
64 server.on("/off",
65 HTTP_POST, [](AsyncWebServerRequest *request){
66 digitalWrite(LED_ON_BOARD, LOW);
67 request->send(303);
68 });
69

70 // Handler for Bootstrap libraries
71 server.on("/bootstrap.min.css",
72 HTTP_GET, [](AsyncWebServerRequest *request) {
73 request->send(SPIFFS, "/bootstrap.min.css");
74 });
75 server.on("/jquery-3.3.1.min.js",
76 HTTP_GET, [](AsyncWebServerRequest *request) {
77 request->send(SPIFFS, "/jquery-3.3.1.min.js");
78 });
79 server.on("/popper.min.js",
80 HTTP_GET, [](AsyncWebServerRequest *request) {
81 request->send(SPIFFS, "/popper.min.js");
82 });
83 server.on("/bootstrap.min.js",
84 HTTP_GET, [](AsyncWebServerRequest *request) {
85 request->send(SPIFFS, "/bootstrap.min.js");
86 });
87

88 // Start server
89 server.begin();
90 }

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 167

Figure 19.5. Using Bootstrap button class to style HTML buttons.

91

92 void loop()
93 {
94 }

Here is the step-by-step how to create the web server:

1. First, in line 23, you need to initialize the GPIO pin as output
for the on-board LED.

2. Then, you need to initialize the SPIFFS as in line 28-33.

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 36-47.

4. Next, in line 50-54, you need to define a handler for the /
request.

5. Next, in line 57-68, you need to define a handler for the HTTP
GET from AJAX request. Within the handler, you need to turn
on or off the LED.

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 168

6. Next, in line 71-86, you need to define handlers for Bootstrap
library files.

7. Finally, in line 89, you need to start the web server.

Subsequently, you need to create the HTML code in a separate file
named as index.html as shown in Listing 19.4.

Listing 19.4. HTML code for styling HTML buttons using Bootstrap button class

1 <html>
2 <head>
3 <title>ESP32 Web Page</title>
4 <link rel="stylesheet" href="bootstrap.min.css">
5 <script src="jquery-3.3.1.min.js"></script>
6 <script src="popper.min.js"></script>
7 <script src="bootstrap.min.js"></script>
8 </head>
9 <body>

10 <div class="container-fluid">
11 <div class="row h-100">
12 <div class="col-4 offset-4 my-auto">
13 <h3 class="text-center">
14 Write LED State using AJAX
15 </h3>
16 <div class="text-center">
17 <button id="btn_on" class="btn btn-success">
18 ON
19 </button>
20 <button id="btn_off" class="btn btn-danger">
21 OFF
22 </button>
23 </div>
24 </div>
25 </div>
26 <div>
27 <script>

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 169

28 document.getElementById("btn_on")
29 .onclick = function() {
30 var xhttp = new XMLHttpRequest();
31 xhttp.open("POST", "on", true);
32 xhttp.send();
33 };
34 document.getElementById("btn_off")
35 .onclick = function() {
36 var xhttp = new XMLHttpRequest();
37 xhttp.open("POST", "off", true);
38 xhttp.send();
39 };
40 </script>
41 </body>
42 </html>

Here we use Bootstrap grid system [26]. It uses containers, rows, and
columns classes to layout and align contents:

� .row and .h-100: .row is used to make a row within the
main container. .h-100 is used to make a content take up
100% height of the web browser.

� col-4, offset-4, and my-auto: .col-4 is used to make
a column with size 4 within the row container. offset-4 is
used to offset the column by 4. my-auto is used to center the
content vertically.

We also use button classes (.btn, .btn-success, and .btn-
danger) to change the style of the default HTML buttons. You can
choose other colors as shown in Figure 19.6.

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 170

Figure 19.6. Bootstrap button variations [27].

Figure 19.7. Using Bootstrap card class to create a container for other HTML
elements.

19.5 Example Code: Bootstrap Card

In the third example code, you are going to create a container for
other HTML elements using Bootstrap card class. We are going to
wrap two texts that display temperature and humidity from DHT11
with the Boostrap card. The result is shown in Figure 19.7. The C
code for this example is shown in Listing 19.5.

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 171

Listing 19.5. C code for creating a container for other HTML elements using
Bootstrap card class

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 8 Mar 2020
3

4 #include <SPIFFS.h>
5 #include <WiFi.h>
6 #include <ESPAsyncWebServer.h>
7 #include <DHT.h>
8 #include <ArduinoJson.h>
9

10 #define DHTPIN 22
11 #define DHTTYPE DHT11
12

13 // Setup DHT pin and type
14 DHT dht(DHTPIN, DHTTYPE);
15

16 const char ssid[] = "Huawei-E5573";
17 const char pass[] = "huaweie5573";
18

19 // TCP server port for HTTP
20 const uint16_t port = 80;
21

22 // Create AsyncWebServer object
23 AsyncWebServer server(port);
24

25 void setup()
26 {
27 // Setup serial communication
28 Serial.begin(115200);
29 // Initialize DHT sensor
30 dht.begin();
31

32 // Initialize SPIFFS
33 if (!SPIFFS.begin(true))
34 {
35 Serial.println("An error has occurred while \

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 172

36 mounting SPIFFS");
37 return;
38 }
39

40 // *** Connect to a WiFi access point ***
41 Serial.printf("Connecting to %s ...\n", ssid);
42 WiFi.mode(WIFI_STA);
43 WiFi.begin(ssid, pass);
44 if (WiFi.waitForConnectResult() != WL_CONNECTED)
45 {
46 Serial.printf("WiFi connect failed! Rebooting ...\n");
47 delay(1000);
48 ESP.restart();
49 }
50 Serial.printf("Connected\n");
51 Serial.printf("IP address: %s\n", WiFi.localIP()
52 .toString().c_str());
53

54 // Handler for root request
55 server.on("/",
56 HTTP_GET, [](AsyncWebServerRequest *request)
57 {
58 request->send(SPIFFS, "/index.html");
59 });
60

61 // Handler for DHT11 AJAX request
62 server.on("/dht11_ajax",
63 HTTP_POST, [](AsyncWebServerRequest *request)
64 {
65 // Read temperature and humidity
66 float temp = dht.readTemperature();
67 float hum = dht.readHumidity();
68

69 // Send JSON response
70 AsyncResponseStream *response =
71 request->beginResponseStream("application/json");
72 DynamicJsonBuffer jsonBuffer;

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 173

73 JsonObject &dht11 = jsonBuffer.createObject();
74 dht11["temp"] = String(temp);
75 dht11["hum"] = String(hum);
76 dht11.printTo(*response);
77 request->send(response);
78 });
79

80 // Handler for Bootstrap libraries
81 server.on("/bootstrap.min.css",
82 HTTP_GET, [](AsyncWebServerRequest *request) {
83 request->send(SPIFFS, "/bootstrap.min.css");
84 });
85 server.on("/jquery-3.3.1.min.js",
86 HTTP_GET, [](AsyncWebServerRequest *request) {
87 request->send(SPIFFS, "/jquery-3.3.1.min.js");
88 });
89 server.on("/popper.min.js",
90 HTTP_GET, [](AsyncWebServerRequest *request) {
91 request->send(SPIFFS, "/popper.min.js");
92 });
93 server.on("/bootstrap.min.js",
94 HTTP_GET, [](AsyncWebServerRequest *request) {
95 request->send(SPIFFS, "/bootstrap.min.js");
96 });
97 server.on("/a076d05399.js",
98 HTTP_GET, [](AsyncWebServerRequest *request) {
99 request->send(SPIFFS, "/a076d05399.js");

100 });
101

102 // Start server
103 server.begin();
104 }
105

106 void loop()
107 {
108 }

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 174

Here is the step-by-step how to create the web server:

1. First, in line 30, you need to initialize DHT11 sensor.

2. Then, you need to initialize the SPIFFS as in line 33-38.

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 41-52.

4. Next, in line 55-59, you need to define a handler for the /
request.

5. Next, in line 62-78, you need to define a handler for the HTTP
POST from AJAX request. Within the handler, you need to
read the temperature and humidity (line 66 and 67), and then
send the them in JSON format to the client (line 70-77).

6. Next, in line 81-100, you need to define handlers for Bootstrap
library files.

7. Finally, in line 103, you need to start the web server.

Subsequently, you need to create the HTML code in a separate file
named as index.html as shown in Listing 19.6.

Listing 19.6. HTML code for creating a container for other HTML elements using
Bootstrap card class

1 <html>
2 <head>
3 <title>ESP32 Web Page</title>
4 <link rel="stylesheet" href="bootstrap.min.css">
5 <script src="jquery-3.3.1.min.js"></script>
6 <script src="popper.min.js"></script>
7 <script src="bootstrap.min.js"></script>
8 <script src="a076d05399.js"></script>
9 </head>

10 <body>

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 175

11 <div class="container-fluid">
12 <div class="row h-100">
13 <div class="col-4 offset-4 my-auto">
14 <div class="card">
15 <div class="card-header text-center">
16 DHT11 Sensor
17 </div>
18 <div class="card-body text-center">
19 <div class="m-5">
20 <h1>
21 <i class="fa-fw fas
22 fa-thermometer-half"></i>
23
24 N/A
25 °C
26
27 </h1>
28 <h1>
29 <i class="fa-fw fas fa-tint"></i>
30
31 N/A
32 %
33
34 </h1>
35 </div>
36 </div>
37 </div>
38 </div>
39 </div>
40 <div>
41 <script>
42 setInterval(function() {
43 getDHT11Value();
44 }, 1000);
45 function getDHT11Value() {
46 var xhttp = new XMLHttpRequest();
47 xhttp.onreadystatechange = function() {

CHAPTER 19. CASCADING STYLE SHEETS (CSS) 176

48 if (this.readyState == 4
49 && this.status == 200) {
50 var response = JSON.parse(this.responseText);
51 document.getElementById("temp_value")
52 .innerHTML = Math.round(response.temp);
53 document.getElementById("hum_value")
54 .innerHTML = Math.round(response.hum);
55 }
56 };
57 xhttp.open("POST", "dht11_ajax", true);
58 xhttp.send();
59 }
60 </script>
61 </body>
62 </html>

Here we use several Bootstrap classes:

� .card, .card-header, and .card-body: these classes
are used to create card container. We define the title within
the .card-header as in line 16, and the content within the
.card-header as in line 19-35.

� .fa-fw, .fas, .fa-thermometer-half, and .fa-tint:
these classes are used to create temperature and humidity icons.

19.6 Summary

In this chapter, we have learned how to use Bootstrap which is a CSS
library to style the HTML web pages. With Bootstrap, you can style
your web pages faster and easier.

Chapter 20

Gauge and Chart

What will you learn in this chapter?

� Streaming sensor readings to a real-time gauge and chart.

20.1 Gauge and Chart

So far, we have used a simple text with <p> tag to display sensor
readings. We have also used Bootstrap to style the web pages. In this
chapter, we are going to use a real-time gauge and chart to stream
sensor readings.

Here, we are going to use Bootstrap together with these two libraries
to stream sensor readings.

� JustGage [28]: this is a JavaScript library that provides ani-
mated gauges.

� Highcharts [29]: this is a JavaScript library that provides charts
for data visualization.

177

CHAPTER 20. GAUGE AND CHART 178

Figure 20.1. Using a gauge to display real-time sensor readings.

20.2 Example Code: Gauge

In the first example code, you are going to use a gauge to display
real-time sensor readings. The result is shown in Figure 20.1. The C
code for this example is shown in Listing 20.1.

Listing 20.1. C code for streaming sensor readings to a real-time gauge

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 8 Mar 2020
3

4 #include <SPIFFS.h>
5 #include <WiFi.h>
6 #include <ESPAsyncWebServer.h>
7 #include <DHT.h>
8 #include <ArduinoJson.h>
9

10 #define DHTPIN 22
11 #define DHTTYPE DHT11
12

13 // Setup DHT pin and type
14 DHT dht(DHTPIN, DHTTYPE);

CHAPTER 20. GAUGE AND CHART 179

15

16 const char ssid[] = "Huawei-E5573";
17 const char pass[] = "huaweie5573";
18

19 // TCP server port for HTTP
20 const uint16_t port = 80;
21

22 // Create AsyncWebServer object
23 AsyncWebServer server(port);
24

25 // Global variable for storing temperature value
26 int temp;
27

28 void setup()
29 {
30 // Setup serial communication
31 Serial.begin(115200);
32 // Initialize DHT sensor
33 dht.begin();
34

35 // Initialize SPIFFS
36 if (!SPIFFS.begin(true))
37 {
38 Serial.println("An error has occurred while \
39 mounting SPIFFS");
40 return;
41 }
42

43 // *** Connect to a WiFi access point ***
44 Serial.printf("Connecting to %s ...\n", ssid);
45 WiFi.mode(WIFI_STA);
46 WiFi.begin(ssid, pass);
47 if (WiFi.waitForConnectResult() != WL_CONNECTED)
48 {
49 Serial.printf("WiFi connect failed! Rebooting ...\n");
50 delay(1000);
51 ESP.restart();

CHAPTER 20. GAUGE AND CHART 180

52 }
53 Serial.printf("Connected\n");
54 Serial.printf("IP address: %s\n", WiFi.localIP()
55 .toString().c_str());
56

57 // Handler for root request
58 server.on("/",
59 HTTP_GET, [](AsyncWebServerRequest *request)
60 {
61 request->send(SPIFFS, "/index.html");
62 });
63

64 // Handler for DHT11 AJAX request
65 server.on("/temperature",
66 HTTP_POST, [](AsyncWebServerRequest *request)
67 {
68 // Send temperature
69 request->send(200, "text/plain",
70 readDHT11Temperature());
71 });
72

73 // Handler for Bootstrap libraries
74 server.on("/bootstrap.min.css",
75 HTTP_GET, [](AsyncWebServerRequest *request) {
76 request->send(SPIFFS, "/bootstrap.min.css");
77 });
78 server.on("/jquery-3.3.1.min.js",
79 HTTP_GET, [](AsyncWebServerRequest *request) {
80 request->send(SPIFFS, "/jquery-3.3.1.min.js");
81 });
82 server.on("/popper.min.js",
83 HTTP_GET, [](AsyncWebServerRequest *request) {
84 request->send(SPIFFS, "/popper.min.js");
85 });
86 server.on("/bootstrap.min.js",
87 HTTP_GET, [](AsyncWebServerRequest *request) {
88 request->send(SPIFFS, "/bootstrap.min.js");

CHAPTER 20. GAUGE AND CHART 181

89 });
90 server.on("/raphael-2.1.4.min.js",
91 HTTP_GET, [](AsyncWebServerRequest *request) {
92 request->send(SPIFFS, "/raphael-2.1.4.min.js");
93 });
94 server.on("/justgage.js",
95 HTTP_GET, [](AsyncWebServerRequest *request) {
96 request->send(SPIFFS, "/justgage.js");
97 });
98

99 // Start server
100 server.begin();
101 }
102

103 void loop()
104 {
105 }
106

107 String readDHT11Temperature()
108 {
109 // Read temperature
110 int t = (int)dht.readTemperature();
111 // Update temperature value only
112 // if it is not NaN and between -15 and 35
113 temp = (isnan(t)) ? temp :
114 (((t >= -15) && (t <= 35)) ? t : temp);
115

116 return String(temp);
117 }

Here is the step-by-step how to create the web server:

1. First, in line 33, you need to initialize DHT11 sensor.

2. Then, you need to initialize the SPIFFS as in line 36-41.

CHAPTER 20. GAUGE AND CHART 182

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 44-55.

4. Next, in line 58-62, you need to define a handler for the /
request.

5. Next, in line 65-71, you need to define a handler for the HTTP
POST from AJAX request. Within the handler, you need to read
the temperature by calling readDHT11Temperature func-
tion, and then send the it as plain text to the client.

6. The readDHT11Temperature function is defined in line 107-
117.

7. Next, in line 74-97, you need to define handlers for Bootstrap
and JustGage libraries.

8. Finally, in line 100, you need to start the web server.

Subsequently, you need to create the HTML code in a separate file
named as index.html as shown in Listing 20.2.

Listing 20.2. HTML code for streaming sensor readings to a real-time gauge

1 <html>
2 <head>
3 <meta http-equiv="Content-Type" content="text/html;
4 charset=utf-8">
5 <title>ESP32 Web Page</title>
6 <link rel="stylesheet" href="bootstrap.min.css">
7 <script src="jquery-3.3.1.min.js"></script>
8 <script src="popper.min.js"></script>
9 <script src="bootstrap.min.js"></script>

10 <script src="raphael-2.1.4.min.js"> </script>
11 <script src="justgage.js"> </script>
12 <style>
13 .card {
14 min-height: 350px;

CHAPTER 20. GAUGE AND CHART 183

15 }
16 .card-body {
17 display: flex;
18 flex-direction: column;
19 align-items: center;
20 justify-content: center;
21 }
22 </style>
23 </head>
24 <body>
25 <div class="container-fluid">
26 <div class="row h-100">
27 <div class="col-4 offset-4 my-auto">
28 <div class="card">
29 <div class="card-header text-center">
30 Temperature
31 </div>
32 <div class="card-body text-center">
33 <div id="gauge_temp" style="width:250px;
34 height:250px"></div>
35 </div>
36 </div>
37 </div>
38 </div>
39 <div>
40 <script>
41 // *** Gauge for temperature ***
42 var gauge_temp;
43 gauge_temp = new JustGage({
44 id: "gauge_temp",
45 min: -15,
46 max: 35,
47 donut: false,
48 pointer: true,
49 gaugeWidthScale: 0.8,
50 counter: true,
51 hideInnerShadow: true,

CHAPTER 20. GAUGE AND CHART 184

52 title: "",
53 titlePosition: "below",
54 levelColors: ["#ffa800", "#ffa800", "#ffa800"],
55 titleFontColor : "#292b2c",
56 label: "C",
57 labelFontColor: "#292b2c",
58 labelMinFontSize: 16,
59 relativeGaugeSize: true
60 });
61

62 setInterval(function() {
63 var xhttp = new XMLHttpRequest();
64 xhttp.onreadystatechange = function() {
65 if (this.readyState == 4
66 && this.status == 200) {
67 gauge_temp
68 .refresh(parseInt(this.responseText));
69 }
70 };
71 xhttp.open("POST", "/temperature", true);
72 xhttp.send();
73 }, 1000);
74 </script>
75 </body>
76 </html>

Here is the step-by-step how to create the gauge:

1. First, you need to use Bootstrap main and card container as in
the previous chapter.

2. Then, within the body of card container you need to add a
placeholder for gauge as in line 33-34. You also need to add
custom CSS styles to the card class as shown in line 12-22.

3. After that, in line 42-60, you need to create and customize the
gauge.

CHAPTER 20. GAUGE AND CHART 185

4. Finally, in line 62-73, you need to set a function that will be ex-
ecuted every one second. Within this function, you need to send
an HTTP POST to request the temperature value. The server
sends the temperature value, and the gauge value is refreshed
by calling refresh method.

Figure 20.2. Using a chart to display real-time sensor readings.

20.3 Example Code: Chart

In the second example code, you are going to use a chart to display
real-time sensor readings. The result is shown in Figure 20.2. The C
code for this example is shown in Listing 20.3.

Listing 20.3. C code for streaming sensor readings to a real-time chart

1 // Author: Erwin Ouyang, aiotedge.tech
2 // Date : 8 Mar 2020
3

4 #include <SPIFFS.h>
5 #include <WiFi.h>
6 #include <ESPAsyncWebServer.h>

CHAPTER 20. GAUGE AND CHART 186

7 #include <DHT.h>
8 #include <ArduinoJson.h>
9

10 #define DHTPIN 22
11 #define DHTTYPE DHT11
12

13 // Setup DHT pin and type
14 DHT dht(DHTPIN, DHTTYPE);
15

16 const char ssid[] = "Huawei-E5573";
17 const char pass[] = "huaweie5573";
18

19 // TCP server port for HTTP
20 const uint16_t port = 80;
21

22 // Create AsyncWebServer object
23 AsyncWebServer server(port);
24

25 // Global variable for storing temperature value
26 int temp;
27

28 void setup()
29 {
30 // Setup serial communication
31 Serial.begin(115200);
32 // Initialize DHT sensor
33 dht.begin();
34

35 // Initialize SPIFFS
36 if (!SPIFFS.begin(true))
37 {
38 Serial.println("An error has occurred while \
39 mounting SPIFFS");
40 return;
41 }
42

43 // *** Connect to a WiFi access point ***

CHAPTER 20. GAUGE AND CHART 187

44 Serial.printf("Connecting to %s ...\n", ssid);
45 WiFi.mode(WIFI_STA);
46 WiFi.begin(ssid, pass);
47 if (WiFi.waitForConnectResult() != WL_CONNECTED)
48 {
49 Serial.printf("WiFi connect failed! Rebooting ...\n");
50 delay(1000);
51 ESP.restart();
52 }
53 Serial.printf("Connected\n");
54 Serial.printf("IP address: %s\n", WiFi.localIP()
55 .toString().c_str());
56

57 // Handler for root request
58 server.on("/",
59 HTTP_GET, [](AsyncWebServerRequest *request)
60 {
61 request->send(SPIFFS, "/index.html");
62 });
63

64 // Handler for DHT11 AJAX request
65 server.on("/temperature",
66 HTTP_POST, [](AsyncWebServerRequest *request)
67 {
68 // Send temperature
69 request->send(200, "text/plain",
70 readDHT11Temperature());
71 });
72

73 // Handler for Bootstrap libraries
74 server.on("/bootstrap.min.css",
75 HTTP_GET, [](AsyncWebServerRequest *request) {
76 request->send(SPIFFS, "/bootstrap.min.css");
77 });
78 server.on("/jquery-3.3.1.min.js",
79 HTTP_GET, [](AsyncWebServerRequest *request) {
80 request->send(SPIFFS, "/jquery-3.3.1.min.js");

CHAPTER 20. GAUGE AND CHART 188

81 });
82 server.on("/popper.min.js",
83 HTTP_GET, [](AsyncWebServerRequest *request) {
84 request->send(SPIFFS, "/popper.min.js");
85 });
86 server.on("/bootstrap.min.js",
87 HTTP_GET, [](AsyncWebServerRequest *request) {
88 request->send(SPIFFS, "/bootstrap.min.js");
89 });
90 server.on("/highcharts.js",
91 HTTP_GET, [](AsyncWebServerRequest *request) {
92 request->send(SPIFFS, "/highcharts.js");
93 });
94

95 // Start server
96 server.begin();
97 }
98

99 void loop()
100 {
101 }
102

103 String readDHT11Temperature()
104 {
105 // Read temperature
106 int t = (int)dht.readTemperature();
107 // Update temperature value only
108 // if it is not NaN and between -15 and 35
109 temp = (isnan(t)) ? temp :
110 (((t >= -15) && (t <= 35)) ? t : temp);
111

112 return String(temp);
113 }

CHAPTER 20. GAUGE AND CHART 189

Here is the step-by-step how to create the web server:

1. First, in line 33, you need to initialize DHT11 sensor.

2. Then, you need to initialize the SPIFFS as in line 36-41.

3. After that, you need to set the ESP32 as WiFi station, and
connect it to an AP as in line 44-55.

4. Next, in line 58-62, you need to define a handler for the /
request.

5. Next, in line 65-71, you need to define a handler for the HTTP
POST from AJAX request. Within the handler, you need to read
the temperature by calling readDHT11Temperature func-
tion, and then send the it as plain text to the client.

6. The readDHT11Temperature function is defined in line 103-
113.

7. Next, in line 73-93, you need to define handlers for Bootstrap
and Highcharts libraries.

8. Finally, in line 96, you need to start the web server.

Subsequently, you need to create the HTML code in a separate file
named as index.html as shown in Listing 20.4.

Listing 20.4. HTML code for streaming sensor readings to a real-time chart

1 <html>
2 <head>
3 <meta http-equiv="Content-Type" content="text/html;
4 charset=utf-8">
5 <title>ESP32 Web Page</title>
6 <link rel="stylesheet" href="bootstrap.min.css">
7 <script src="jquery-3.3.1.min.js"></script>
8 <script src="popper.min.js"></script>

CHAPTER 20. GAUGE AND CHART 190

9 <script src="bootstrap.min.js"></script>
10 <script src="highcharts.js"> </script>
11 <style>
12 .card {
13 min-height: 350px;
14 }
15 .card-body {
16 display: flex;
17 flex-direction: column;
18 align-items: center;
19 justify-content: center;
20 }
21 </style>
22 </head>
23 <body>
24 <div class="container-fluid">
25 <div class="row h-100">
26 <div class="col-4 offset-4 my-auto">
27 <div class="card">
28 <div class="card-header text-center">
29 Temperature
30 </div>
31 <div class="card-body text-center"
32 id="chart_container">
33 <div id="chart_temperature"></div>
34 </div>
35 </div>
36 </div>
37 </div>
38 <div>
39 <script>
40 // *** Chart for number of users ***
41 var chartTemp = new Highcharts.Chart({
42 chart: {
43 renderTo : ’chart_temperature’
44 },
45 title: {

CHAPTER 20. GAUGE AND CHART 191

46 text: ’’
47 },
48 series: [{
49 showInLegend: false,
50 data: []
51 }],
52 plotOptions: {
53 line: {
54 animation: false,
55 dataLabels: {
56 enabled: true
57 }
58 },
59 series: {
60 color: ’#ffa800’
61 }
62 },
63 xAxis: {
64 type: ’datetime’,
65 dateTimeLabelFormats: {
66 second: ’%H:%M:%S’
67 }
68 },
69 yAxis: {
70 title: {
71 text: ’Temperature [C]’
72 }
73 },
74 credits: {
75 enabled: false
76 }
77 });
78

79 $("#chart_temperature").highcharts()
80 .setSize($("#chart_container").width(), 250);
81 $(window).on(’resize’, function(){
82 $("#chart_temperature").highcharts()

CHAPTER 20. GAUGE AND CHART 192

83 .setSize($("#chart_container").width(), 250);
84 });
85

86 setInterval(function() {
87 var xhttp = new XMLHttpRequest();
88 xhttp.onreadystatechange = function() {
89 if (this.readyState == 4
90 && this.status == 200) {
91 var x = (new Date()).getTime();
92 var y = parseInt(this.responseText);
93

94 if (chartTemp.series[0].data.length > 40) {
95 chartTemp.series[0]
96 .addPoint([x, y], true, true, true);
97 } else {
98 chartTemp.series[0]
99 .addPoint([x, y], true, false, true);

100 }
101 }
102 };
103 xhttp.open("POST", "/temperature", true);
104 xhttp.send();
105 }, 1000);
106 </script>
107 </body>
108 </html>

Here is the step-by-step how to create the chart:

1. First, you need to use Bootstrap main and card container as in
the previous chapter.

2. Then, within the body of card container you need to add a
placeholder for chart as in line 33. You also need to add custom
CSS styles to the card class as shown in line 11-21.

CHAPTER 20. GAUGE AND CHART 193

3. After that, in line 41-84, you need to create and customize the
chart.

4. Finally, in line 86-105, you need to set a function that will be
executed every one second. Within this function, you need to
send an HTTP POST to request the temperature value. The
server sends the temperature value, and a new data point is
added to the chart by calling addPoint method.

20.4 Summary

In this chapter, we have learned how to use real-time gauge and chart
to stream sensor readings. By using gauge and chart, we can make
the user interface of the web page more attractive. Furthermore, you
can integrate these gauge and chart to your IoT dashboard.

Bibliography

[1] Wikipedia, “Internet of things.” https://en.wikipedia.
org/wiki/Internet_of_things. Accessed on 2020-3-14.

[2] Wikipedia, “Internet of things, applications.” https:
//en.wikipedia.org/wiki/Internet_of_things#
Applications. Accessed on 2020-3-14.

[3] Wikipedia, “Esp32.” https://en.wikipedia.org/wiki/
ESP32. Accessed on 2020-3-14.

[4] Espressif, “Esp32 modules.” https://www.espressif.
com/en/products/hardware/modules. Accessed on
2020-3-14.

[5] Espressif, “Esp32 development boards.” https:
//www.espressif.com/en/products/hardware/
development-boards. Accessed on 2020-3-14.

[6] Zerynth, “Doit esp32 devkit v1.” https://docs.zerynth.
com/latest/official/board.zerynth.doit_
esp32/docs/index.html. Accessed on 2020-3-14.

[7] Wikipedia, “Wi-fi.” https://en.wikipedia.org/wiki/
Wi-Fi. Accessed on 2020-3-15.

194

BIBLIOGRAPHY 195

[8] Wikipedia, “Wi-fi versions.” https://en.wikipedia.org/
wiki/Wi-Fi#Versions. Accessed on 2020-3-15.

[9] Wikipedia, “Arduino.” https://en.wikipedia.org/
wiki/Arduino. Accessed on 2020-3-15.

[10] Espressif, “Arduino core for the esp32.” https://github.
com/espressif/arduino-esp32. Accessed on 2020-3-15.

[11] M. N. Dev, “Espasyncwebserver.” https://github.com/
me-no-dev/ESPAsyncWebServer. Accessed on 2020-3-15.

[12] Zerynth, “Doit esp32 devkit v1 power.” https:
//docs.zerynth.com/latest/official/board.
zerynth.doit_esp32/docs/index.html#power.
Accessed on 2020-3-16.

[13] Espressif, “Installation instructions using arduino ide boards man-
ager.” https://github.com/espressif/arduino-
esp32/blob/master/docs/arduino-ide/boards_
manager.md. Accessed on 2020-3-15.

[14] R. N. Tutorials, “Esp32 pinout reference: Which gpio pins
should you use?.” https://randomnerdtutorials.com/
esp32-pinout-reference-gpios/. Accessed on 2020-3-
17.

[15] cplusplus, “printf.” www.cplusplus.com/reference/
cstdio/printf/. Accessed on 2018-10-16.

[16] Adafruit, “Dht11 vs dht22.” https://learn.adafruit.
com/dht/overview. Accessed on 2020-4-11.

[17] Adafruit, “Dht-sensor-library.” https://github.com/
adafruit/DHT-sensor-library. Accessed on 2020-4-11.

BIBLIOGRAPHY 196

[18] M. Integrated, “Ds1307.” https://datasheets.
maximintegrated.com/en/ds/DS1307.pdf. Accessed
on 2020-4-11.

[19] Makuna, “Rtc.” https://github.com/Makuna/Rtc. Ac-
cessed on 2020-4-11.

[20] M. N. Dev, “Espasyncwebserver.” https://github.com/
me-no-dev/ESPAsyncWebServer. Accessed on 2020-4-13.

[21] M. N. Dev, “Asynctcp.” https://github.com/me-no-
dev/AsyncTCP. Accessed on 2020-4-13.

[22] ArduinoJson, “Arduinojson.” https://arduinojson.
org/. Accessed on 2020-5-2.

[23] M. N. Dev, “Arduino esp32 filesystem uploader.” https://
github.com/me-no-dev/arduino-esp32fs-plugin.
Accessed on 2020-6-6.

[24] w3schools.com, “Css tutorial.” https://www.w3schools.
com/css/default.asp/. Accessed on 2020-6-1.

[25] Bootstrap, “Badges.” https://getbootstrap.com/
docs/4.4/components/badge/. Accessed on 2020-6-6.

[26] Bootstrap, “Grid.” https://getbootstrap.com/docs/
4.0/layout/grid/. Accessed on 2020-6-6.

[27] Bootstrap, “Button.” https://getbootstrap.com/
docs/4.0/components/buttons/. Accessed on 2020-6-6.

[28] B. Djuricic, “Justgage.” https://github.com/
toorshia/justgage/. Accessed on 2020-6-6.

[29] Highsoft, “Highcharts.” https://github.com/
highcharts/highcharts/. Accessed on 2020-6-6.

	Cover
	Downloading the Code
	Preface
	Contents
	Listings
	Chapter 1 Introduction
	Part I Peripherals Programming
	Chapter 2 Digital Output
	Chapter 3 Digital Input
	Chapter 4 Serial I/O
	Chapter 5 Analog Output
	Chapter 6 Analog Input
	Chapter 7 Sensors

	Part II Wi-Fi Programming
	Chapter 8 Wi-Fi Access Point
	Chapter 9 Wi-Fi Station
	Chapter 10 TCP Server
	Chapter 11 TCP Client
	Chapter 12 HTTP Server
	Chapter 13 HTTP Client

	Part III Embedded Web Development
	Chapter 14 Web Server
	Chapter 15 HyperText Markup Language(HTML)
	Chapter 16 Web Page Data Exchange
	Chapter 17 JavaScript (JS)
	Chapter 18 SPI Flash File System
	Chapter 19 Cascading Style Sheets (CSS)
	Chapter 20 Gauge and Chart

	Bibliography

